IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v10y2021i11p1279-d684882.html
   My bibliography  Save this article

Deriving the Main Cultivation Direction from Open Remote Sensing Data to Determine the Support Practice Measure Contouring

Author

Listed:
  • Dominik Scholand

    (Chair of Engineering Hydrology and Water Management, Technical University of Darmstadt, 64287 Darmstadt, Germany)

  • Britta Schmalz

    (Chair of Engineering Hydrology and Water Management, Technical University of Darmstadt, 64287 Darmstadt, Germany)

Abstract

The P-factor for support practice of the Universal Soil Loss Equation (USLE) accounts for soil conservation measures and leads to a significant reduction in the modelled soil loss. However, in the practical application, the P-factor is the most neglected factor overall due to high effort for determining or lack of input data. This study provides a new method for automatic derivation of the main cultivation direction from seed rows and tramlines on agricultural land parcels using the Fast Line Detector (FLD) of the Open Computer Vision (OpenCV) package and open remote sensing data from Google Earth™. Comparison of the cultivation direction with the mean aspect for each land parcel allows the determination of a site-specific P-factor for the soil conservation measure contouring. After calibration of the FLD parameters, the success rate in a first application in the low mountain range Fischbach catchment, Germany, was 77.7% for 278 agricultural land parcels. The main reasons for unsuccessful detection were problems with headland detection, existing soil erosion, and widely varying albedo within the plots as well as individual outliers. The use of a corrected mask and enhanced parameterization offers promising improvements for a higher success rate of the FLD.

Suggested Citation

  • Dominik Scholand & Britta Schmalz, 2021. "Deriving the Main Cultivation Direction from Open Remote Sensing Data to Determine the Support Practice Measure Contouring," Land, MDPI, vol. 10(11), pages 1-34, November.
  • Handle: RePEc:gam:jlands:v:10:y:2021:i:11:p:1279-:d:684882
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/10/11/1279/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/10/11/1279/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Krishna Bhandari & Jagannath Aryal & Rotchanatch Darnsawasdi, 2015. "A geospatial approach to assessing soil erosion in a watershed by integrating socio-economic determinants and the RUSLE model," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 321-342, January.
    2. Ranghu Wang & Shuwen Zhang & Jiuchun Yang & Luoman Pu & Chaobin Yang & Lingxue Yu & Liping Chang & Kun Bu, 2016. "Integrated Use of GCM, RS, and GIS for the Assessment of Hillslope and Gully Erosion in the Mushi River Sub-Catchment, Northeast China," Sustainability, MDPI, vol. 8(4), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuxin Cen & Bin Zhang & Jun Luo & Qingchun Deng & Hui Liu & Lei Wang, 2022. "Influence of Topographic Factors on the Characteristics of Gully Systems in Mountainous Areas of Ningnan Dry-Hot Valley, SW China," IJERPH, MDPI, vol. 19(14), pages 1-17, July.
    2. Shifa Chen & Xuan Zha, 2016. "Evaluation of soil erosion vulnerability in the Zhuxi watershed, Fujian Province, China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1589-1607, July.
    3. Luoman Pu & Shuwen Zhang & Jiuchun Yang & Liping Chang & Shuting Bai, 2019. "Spatio-Temporal Dynamics of Maize Potential Yield and Yield Gaps in Northeast China from 1990 to 2015," IJERPH, MDPI, vol. 16(7), pages 1-18, April.
    4. Jianglong Yuan & Xiaohuang Liu & Hongyu Li & Ran Wang & Xinping Luo & Liyuan Xing & Chao Wang & Honghui Zhao, 2023. "Assessment of Spatial–Temporal Variations of Soil Erosion in Hulunbuir Plateau from 2000 to 2050," Land, MDPI, vol. 12(6), pages 1-23, June.
    5. Nektarios N. Kourgialas & Georgios C. Koubouris & George P. Karatzas & Ioannis Metzidakis, 2016. "Assessing water erosion in Mediterranean tree crops using GIS techniques and field measurements: the effect of climate change," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 83(1), pages 65-81, October.
    6. Jamal Jokar Arsanjani & Eric Vaz, 2017. "Special Issue Editorial: Earth Observation and Geoinformation Technologies for Sustainable Development," Sustainability, MDPI, vol. 9(5), pages 1-5, May.
    7. Yanyan Li & Jinbing Zhang & Hui Zhu & Zhimin Zhou & Shan Jiang & Shuangyan He & Ying Zhang & Yicheng Huang & Mengfan Li & Guangrui Xing & Guanghui Li, 2023. "Soil Erosion Characteristics and Scenario Analysis in the Yellow River Basin Based on PLUS and RUSLE Models," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    8. Nan Jiang & Fojun Yao & Tao Liu & Zhuo Chen & Chen Hu & Xinxia Geng, 2023. "Estimating the Soil Erosion Response to Land-Use Change Using GIS-Based RUSLE and Remote Sensing: A Case Study of Heilongjiang Province, China," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    9. Luoman Pu & Shuwen Zhang & Fei Li & Ranghu Wang & Jiuchun Yang & Liping Chang, 2018. "Impact of Farmland Change on Soybean Production Potential in Recent 40 Years: A Case Study in Western Jilin, China," IJERPH, MDPI, vol. 15(7), pages 1-28, July.
    10. Morteza Akbari & Ehsan Neamatollahi & Hadi Memarian & Mohammad Alizadeh Noughani, 2023. "Assessing impacts of floods disaster on soil erosion risk based on the RUSLE-GloSEM approach in western Iran," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1689-1710, June.
    11. Dawit Samuel Teshome & Mitiku Badasa Moisa & Dessalegn Obsi Gemeda & Songcai You, 2022. "Effect of Land Use-Land Cover Change on Soil Erosion and Sediment Yield in Muger Sub-Basin, Upper Blue Nile Basin, Ethiopia," Land, MDPI, vol. 11(12), pages 1-20, November.
    12. Liwei Zhang & Yihe Lü & Bojie Fu & Yuan Zeng, 2017. "Uncertainties of Two Methods in Selecting Priority Areas for Protecting Soil Conservation Service at Regional Scale," Sustainability, MDPI, vol. 9(9), pages 1-12, September.
    13. Arun Mondal & Deepak Khare & Sananda Kundu, 2016. "Impact assessment of climate change on future soil erosion and SOC loss," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 82(3), pages 1515-1539, July.
    14. I. Gaubi & A. Chaabani & A. Ben Mammou & M. H. Hamza, 2017. "A GIS-based soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) (Lebna watershed, Cap Bon, Tunisia)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 86(1), pages 219-239, March.
    15. George Watene & Lijun Yu & Yueping Nie & Jianfeng Zhu & Thomas Ngigi & Jean de Dieu Nambajimana & Benson Kenduiywo, 2021. "Water Erosion Risk Assessment in the Kenya Great Rift Valley Region," Sustainability, MDPI, vol. 13(2), pages 1-31, January.
    16. Sumedh R. Kashiwar & Manik Chandra Kundu & Usha R. Dongarwar, 2022. "Soil erosion estimation of Bhandara region of Maharashtra, India, by integrated use of RUSLE, remote sensing, and GIS," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(2), pages 937-959, January.
    17. Xiao Li & Xiang Niu & Bing Wang & Peng Gao & Yu Liu, 2016. "Driving Forces of Dynamic Changes in Soil Erosion in the Dahei Mountain Ecological Restoration Area of Northern China Based on GIS and RS," PLOS ONE, Public Library of Science, vol. 11(3), pages 1-15, March.
    18. H. Vijith & L. W. Seling & D. Dodge-Wan, 2018. "Estimation of soil loss and identification of erosion risk zones in a forested region in Sarawak, Malaysia, Northern Borneo," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(3), pages 1365-1384, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:10:y:2021:i:11:p:1279-:d:684882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.