IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i7p1522-d158688.html
   My bibliography  Save this article

Impact of Farmland Change on Soybean Production Potential in Recent 40 Years: A Case Study in Western Jilin, China

Author

Listed:
  • Luoman Pu

    (College of Earth Science, Jilin University, Changchun 130012, China
    Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

  • Shuwen Zhang

    (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

  • Fei Li

    (College of Unban and Environmental Science, Northwest University, Xi’an 710127, China)

  • Ranghu Wang

    (Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China)

  • Jiuchun Yang

    (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

  • Liping Chang

    (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

Abstract

During the last 40 years, the quantity and spatial patterns of farmland in Western Jilin have changed dramatically, which has had a great impact on soybean production potential. This study used one of the most advanced crop production potential models, the Global Agro-Ecological Zones model, to calculate the soybean production potential in Western Jilin based on meteorological, topography, soil and land use data, and analyzed the impact of farmland change on soybean production potential during 1975–2013. The main conclusions were the following: first, the total soybean production potential in Western Jilin in 2013 was 8.92 million tonnes, and the average soybean production potential was 1612 kg/ha. The production potential of eastern area was higher than the other areas of Western Jilin. Second, farmland change led to a growth of 3.30 million tonnes in soybean production potential between 1975 and 2000, and a decrease of 1.03 million tonnes between 2000 and 2013. Third, taking account of two situations of farmland change, the conversion between dryland and other categories, and the change of irrigation percentage led to the total soybean production potential in Western Jilin increased by 2.31 and only 0.28 million tonnes respectively between 1975 and 2000, and increased by 0.12 and 0.29 million tonnes respectively between 2000 and 2013. In general, the increase of soybean potential production was mainly due to grassland and woodland reclamation. The results of this study would be a good guideline for protecting safe baseline of farmland, managing land resources, and ensuring continuity and stability of soybean supply and food security.

Suggested Citation

  • Luoman Pu & Shuwen Zhang & Fei Li & Ranghu Wang & Jiuchun Yang & Liping Chang, 2018. "Impact of Farmland Change on Soybean Production Potential in Recent 40 Years: A Case Study in Western Jilin, China," IJERPH, MDPI, vol. 15(7), pages 1-28, July.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:7:p:1522-:d:158688
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/7/1522/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/7/1522/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fei Li & Shuwen Zhang & Xinliang Xu & Jiuchun Yang & Qing Wang & Kun Bu & Liping Chang, 2015. "The Response of Grain Potential Productivity to Land Use Change: A Case Study in Western Jilin, China," Sustainability, MDPI, vol. 7(11), pages 1-16, November.
    2. Ranghu Wang & Shuwen Zhang & Jiuchun Yang & Luoman Pu & Chaobin Yang & Lingxue Yu & Liping Chang & Kun Bu, 2016. "Integrated Use of GCM, RS, and GIS for the Assessment of Hillslope and Gully Erosion in the Mushi River Sub-Catchment, Northeast China," Sustainability, MDPI, vol. 8(4), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luoman Pu & Shuwen Zhang & Jiuchun Yang & Liping Chang & Shuting Bai, 2019. "Spatio-Temporal Dynamics of Maize Potential Yield and Yield Gaps in Northeast China from 1990 to 2015," IJERPH, MDPI, vol. 16(7), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuxin Cen & Bin Zhang & Jun Luo & Qingchun Deng & Hui Liu & Lei Wang, 2022. "Influence of Topographic Factors on the Characteristics of Gully Systems in Mountainous Areas of Ningnan Dry-Hot Valley, SW China," IJERPH, MDPI, vol. 19(14), pages 1-17, July.
    2. Luoman Pu & Shuwen Zhang & Jiuchun Yang & Liping Chang & Shuting Bai, 2019. "Spatio-Temporal Dynamics of Maize Potential Yield and Yield Gaps in Northeast China from 1990 to 2015," IJERPH, MDPI, vol. 16(7), pages 1-18, April.
    3. Jianglong Yuan & Xiaohuang Liu & Hongyu Li & Ran Wang & Xinping Luo & Liyuan Xing & Chao Wang & Honghui Zhao, 2023. "Assessment of Spatial–Temporal Variations of Soil Erosion in Hulunbuir Plateau from 2000 to 2050," Land, MDPI, vol. 12(6), pages 1-23, June.
    4. Jamal Jokar Arsanjani & Eric Vaz, 2017. "Special Issue Editorial: Earth Observation and Geoinformation Technologies for Sustainable Development," Sustainability, MDPI, vol. 9(5), pages 1-5, May.
    5. Luoman Pu & Jiuchun Yang & Lingxue Yu & Changsheng Xiong & Fengqin Yan & Yubo Zhang & Shuwen Zhang, 2021. "Simulating Land-Use Changes and Predicting Maize Potential Yields in Northeast China for 2050," IJERPH, MDPI, vol. 18(3), pages 1-21, January.
    6. Yanyan Li & Jinbing Zhang & Hui Zhu & Zhimin Zhou & Shan Jiang & Shuangyan He & Ying Zhang & Yicheng Huang & Mengfan Li & Guangrui Xing & Guanghui Li, 2023. "Soil Erosion Characteristics and Scenario Analysis in the Yellow River Basin Based on PLUS and RUSLE Models," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    7. Nan Jiang & Fojun Yao & Tao Liu & Zhuo Chen & Chen Hu & Xinxia Geng, 2023. "Estimating the Soil Erosion Response to Land-Use Change Using GIS-Based RUSLE and Remote Sensing: A Case Study of Heilongjiang Province, China," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    8. Dominik Scholand & Britta Schmalz, 2021. "Deriving the Main Cultivation Direction from Open Remote Sensing Data to Determine the Support Practice Measure Contouring," Land, MDPI, vol. 10(11), pages 1-34, November.
    9. George Watene & Lijun Yu & Yueping Nie & Jianfeng Zhu & Thomas Ngigi & Jean de Dieu Nambajimana & Benson Kenduiywo, 2021. "Water Erosion Risk Assessment in the Kenya Great Rift Valley Region," Sustainability, MDPI, vol. 13(2), pages 1-31, January.
    10. Song, Zengzhen & Peng, Yuxing & Li, Zizhong & Zhang, Shuai & Liu, Xiaotong & Tan, Senwen, 2022. "Two irrigation events can achieve relatively high, stable corn yield and water productivity in aeolian sandy soil of northeast China," Agricultural Water Management, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:7:p:1522-:d:158688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.