IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i10p8004-d1146743.html
   My bibliography  Save this article

Estimating the Soil Erosion Response to Land-Use Change Using GIS-Based RUSLE and Remote Sensing: A Case Study of Heilongjiang Province, China

Author

Listed:
  • Nan Jiang

    (Harbin Center for Integrated Natural Resources Survey, China Geological Survey, Harbin 150086, China
    School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China)

  • Fojun Yao

    (Key Laboratory of Metallogeny and Resources Assessment, Institute of Mineral Resources Chinese Academy of Geological Sciences, Beijing 100037, China)

  • Tao Liu

    (Harbin Center for Integrated Natural Resources Survey, China Geological Survey, Harbin 150086, China)

  • Zhuo Chen

    (Harbin Center for Integrated Natural Resources Survey, China Geological Survey, Harbin 150086, China)

  • Chen Hu

    (Harbin Center for Integrated Natural Resources Survey, China Geological Survey, Harbin 150086, China)

  • Xinxia Geng

    (Key Laboratory of Metallogeny and Resources Assessment, Institute of Mineral Resources Chinese Academy of Geological Sciences, Beijing 100037, China)

Abstract

Understanding soil erosion in the northeastern area of China with black soil is vital for protecting the natural environment and preserving food security. Although spatial and temporal studies of soil erosion have been conducted, further research is needed on the correlation between soil erosion and land use type changes. In this study, the soil erosion modulus is computed using RUSLE. The model that is most suitable to the research area was produced by contrasting three different approaches to estimating the rainfall erosion factor. The RUSLE based on the multi-year continuous high-density hourly average precipitation had the best performance of the bunch, with a MAPE of 15.49%, RMSPE of 7.99%, and R 2 of 0.99. Based on this model, simulated soil erosion trends in the study region from 1980 to 2020 were examined, along with the link between soil erosion and land use change. The results showed that 40.47% of the overall erosion area is made up of cultivated land, and 97.83% of it is low erosion. The most severe soil erosion occurred on unused land, with moderate and above soil erosion occupying 48.93%. Since 2000, there has been an increase in the erosion of soil in the study region, which is primarily spatially represented in the rise in the soil erosion of forests in the central and northern mountainous areas. The study’s findings serve as a guide for land planning and the development of sustainable agriculture.

Suggested Citation

  • Nan Jiang & Fojun Yao & Tao Liu & Zhuo Chen & Chen Hu & Xinxia Geng, 2023. "Estimating the Soil Erosion Response to Land-Use Change Using GIS-Based RUSLE and Remote Sensing: A Case Study of Heilongjiang Province, China," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8004-:d:1146743
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/10/8004/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/10/8004/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Haiyan Fang & Zemeng Fan, 2020. "Assessment of Soil Erosion at Multiple Spatial Scales Following Land Use Changes in 1980–2017 in the Black Soil Region, (NE) China," IJERPH, MDPI, vol. 17(20), pages 1-19, October.
    2. Taoyan Dai & Liquan Wang & Tienan Li & Pengpeng Qiu & Jun Wang, 2022. "Study on the Characteristics of Soil Erosion in the Black Soil Area of Northeast China under Natural Rainfall Conditions: The Case of Sunjiagou Small Watershed," Sustainability, MDPI, vol. 14(14), pages 1-16, July.
    3. Andrea Koch & Alex McBratney & Rattan Lal, 2012. "Put soil security on the global agenda," Nature, Nature, vol. 492(7428), pages 186-186, December.
    4. Qurrat Ulain & Syeda Maria Ali & Ashfaq Ahmad Shah & Kanwar Muhammad Javed Iqbal & Wahid Ullah & Muhammad Atiq Ur Rehman Tariq, 2022. "Identification of Soil Erosion-Based Degraded Land Areas by Employing a Geographic Information System—A Case Study of Pakistan for 1990–2020," Sustainability, MDPI, vol. 14(19), pages 1-12, September.
    5. Stella Margiorou & Aristeidis Kastridis & Marios Sapountzis, 2022. "Pre/Post-Fire Soil Erosion and Evaluation of Check-Dams Effectiveness in Mediterranean Suburban Catchments Based on Field Measurements and Modeling," Land, MDPI, vol. 11(10), pages 1-18, October.
    6. Ranghu Wang & Shuwen Zhang & Jiuchun Yang & Luoman Pu & Chaobin Yang & Lingxue Yu & Liping Chang & Kun Bu, 2016. "Integrated Use of GCM, RS, and GIS for the Assessment of Hillslope and Gully Erosion in the Mushi River Sub-Catchment, Northeast China," Sustainability, MDPI, vol. 8(4), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chenxi Liu & Manyu Dong & Qian Liu & Zhihua Chen & Yulian Wang, 2023. "Spatiotemporal Variability in Rainfall Erosivity and Its Teleconnection with Atmospheric Circulation Indices in China," Sustainability, MDPI, vol. 16(1), pages 1-19, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian Zuo & Yong Zhou & Jingyi Liu, 2022. "Construction and Optimization Strategy of an Ecological Network in Mountainous Areas: A Case Study in Southwestern Hubei Province, China," IJERPH, MDPI, vol. 19(15), pages 1-27, August.
    2. David Oscar Yawson & Michael Osei Adu & Benjamin Ason & Frederick Ato Armah & Genesis Tambang Yengoh, 2016. "Putting Soil Security on the Policy Agenda: Need for a Familiar Framework," Challenges, MDPI, vol. 7(2), pages 1-11, September.
    3. Yuxin Cen & Bin Zhang & Jun Luo & Qingchun Deng & Hui Liu & Lei Wang, 2022. "Influence of Topographic Factors on the Characteristics of Gully Systems in Mountainous Areas of Ningnan Dry-Hot Valley, SW China," IJERPH, MDPI, vol. 19(14), pages 1-17, July.
    4. Jixian Mo & Jie Li & Ziying Wang & Ziwei Song & Jingyi Feng & Yanjing Che & Jiandong Rong & Siyu Gu, 2023. "Spatiotemporal Evolution of Wind Erosion and Ecological Service Assessments in Northern Songnen Plain, China," Sustainability, MDPI, vol. 15(7), pages 1-20, March.
    5. Haiyan Fang, 2021. "Changes in Cultivated Land Area and Associated Soil and SOC Losses in Northeastern China: The Role of Land Use Policies," IJERPH, MDPI, vol. 18(21), pages 1-13, October.
    6. Luoman Pu & Shuwen Zhang & Jiuchun Yang & Liping Chang & Shuting Bai, 2019. "Spatio-Temporal Dynamics of Maize Potential Yield and Yield Gaps in Northeast China from 1990 to 2015," IJERPH, MDPI, vol. 16(7), pages 1-18, April.
    7. Jianglong Yuan & Xiaohuang Liu & Hongyu Li & Ran Wang & Xinping Luo & Liyuan Xing & Chao Wang & Honghui Zhao, 2023. "Assessment of Spatial–Temporal Variations of Soil Erosion in Hulunbuir Plateau from 2000 to 2050," Land, MDPI, vol. 12(6), pages 1-23, June.
    8. Cristiano Franceschinis & Ulf Liebe & Mara Thiene & Jürgen Meyerhoff & Damien Field & Alex McBratney, 2022. "The effect of social and personal norms on stated preferences for multiple soil functions: evidence from Australia and Italy," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 335-362, April.
    9. Jamal Jokar Arsanjani & Eric Vaz, 2017. "Special Issue Editorial: Earth Observation and Geoinformation Technologies for Sustainable Development," Sustainability, MDPI, vol. 9(5), pages 1-5, May.
    10. Raymond Mugandani & Liboster Mwadzingeni & Paramu Mafongoya, 2021. "Contribution of Conservation Agriculture to Soil Security," Sustainability, MDPI, vol. 13(17), pages 1-11, September.
    11. Yanyan Li & Jinbing Zhang & Hui Zhu & Zhimin Zhou & Shan Jiang & Shuangyan He & Ying Zhang & Yicheng Huang & Mengfan Li & Guangrui Xing & Guanghui Li, 2023. "Soil Erosion Characteristics and Scenario Analysis in the Yellow River Basin Based on PLUS and RUSLE Models," IJERPH, MDPI, vol. 20(2), pages 1-19, January.
    12. Aristeidis Kastridis & Stella Margiorou & Marios Sapountzis, 2022. "Check-Dams and Silt Fences: Cost-Effective Methods to Monitor Soil Erosion under Various Disturbances in Forest Ecosystems," Land, MDPI, vol. 11(12), pages 1-16, November.
    13. Chao Liu & Han Li & Jiuzhe Xu & Weijun Gao & Xiang Shen & Sheng Miao, 2023. "Applying Convolutional Neural Network to Predict Soil Erosion: A Case Study of Coastal Areas," IJERPH, MDPI, vol. 20(3), pages 1-21, January.
    14. Rui Zhao & Kening Wu & Xiaoliang Li & Nan Gao & Mingming Yu, 2021. "Discussion on the Unified Survey and Evaluation of Cultivated Land Quality at County Scale for China’s 3rd National Land Survey: A Case Study of Wen County, Henan Province," Sustainability, MDPI, vol. 13(5), pages 1-26, February.
    15. Luoman Pu & Shuwen Zhang & Fei Li & Ranghu Wang & Jiuchun Yang & Liping Chang, 2018. "Impact of Farmland Change on Soybean Production Potential in Recent 40 Years: A Case Study in Western Jilin, China," IJERPH, MDPI, vol. 15(7), pages 1-28, July.
    16. Zhijia Gu & Shaomin Cao & Ao Li & Qiang Yi & Shuang Li & Panying Li, 2023. "Comparison of Sampling and Grid Methods for Regional Soil Erosion Assessment," Land, MDPI, vol. 12(9), pages 1-17, August.
    17. Kamal Elbadaoui & Soukaina Mansour & Mustapha Ikirri & Kamal Abdelrahman & Tamer Abu-Alam & Mohamed Abioui, 2023. "Integrating Erosion Potential Model (EPM) and PAP/RAC Guidelines for Water Erosion Mapping and Detection of Vulnerable Areas in the Toudgha River Watershed of the Central High Atlas, Morocco," Land, MDPI, vol. 12(4), pages 1-24, April.
    18. Dominik Scholand & Britta Schmalz, 2021. "Deriving the Main Cultivation Direction from Open Remote Sensing Data to Determine the Support Practice Measure Contouring," Land, MDPI, vol. 10(11), pages 1-34, November.
    19. Shuning Lu & Chong Yao & Faqi Wu, 2023. "Effects of Counter Tillage and Slope Gradient on Nutrient Losses on Sloping Farmland," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    20. George Watene & Lijun Yu & Yueping Nie & Jianfeng Zhu & Thomas Ngigi & Jean de Dieu Nambajimana & Benson Kenduiywo, 2021. "Water Erosion Risk Assessment in the Kenya Great Rift Valley Region," Sustainability, MDPI, vol. 13(2), pages 1-31, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:10:p:8004-:d:1146743. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.