IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i2p844-d481412.html
   My bibliography  Save this article

Water Erosion Risk Assessment in the Kenya Great Rift Valley Region

Author

Listed:
  • George Watene

    (Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    Department of Geomatic Engineering and Geospatial Information Systems, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200 Nairobi, Kenya
    Sino-Africa Joint Research Centre, P.O. Box 62000-00200 Nairobi, Kenya)

  • Lijun Yu

    (Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China)

  • Yueping Nie

    (Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China)

  • Jianfeng Zhu

    (Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Thomas Ngigi

    (Department of Geomatic Engineering and Geospatial Information Systems, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200 Nairobi, Kenya
    Sino-Africa Joint Research Centre, P.O. Box 62000-00200 Nairobi, Kenya)

  • Jean de Dieu Nambajimana

    (University of Chinese Academy of Sciences, Beijing 100049, China
    Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China)

  • Benson Kenduiywo

    (Department of Geomatic Engineering and Geospatial Information Systems, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200 Nairobi, Kenya)

Abstract

The Kenya Great Rift Valley (KGRV) region unique landscape comprises of mountainous terrain, large valley-floor lakes, and agricultural lands bordered by extensive Arid and Semi-Arid Lands (ASALs). The East Africa (EA) region has received high amounts of rainfall in the recent past as evidenced by the rising lake levels in the GRV lakes. In Kenya, few studies have quantified soil loss at national scales and erosion rates information on these GRV lakes’ regional basins within the ASALs is lacking. This study used the Revised Universal Soil Loss Equation (RUSLE) model to estimate soil erosion rates between 1990 and 2015 in the Great Rift Valley region of Kenya which is approximately 84.5% ASAL. The mean erosion rates for both periods was estimated to be tolerable (6.26 t ha −1 yr −1 and 7.14 t ha −1 yr −1 in 1990 and 2015 respectively) resulting in total soil loss of 116 Mt yr −1 and 132 Mt yr −1 in 1990 and 2015 respectively. Approximately 83% and 81% of the erosive lands in KGRV fell under the low risk category (<10 t ha −1 yr −1 ) in 1990 and 2015 respectively while about 10% were classified under the top three conservation priority levels in 2015. Lake Nakuru basin had the highest erosion rate net change (4.19 t ha −1 yr −1 ) among the GRV lake basins with Lake Bogoria-Baringo recording annual soil loss rates >10 t ha −1 yr −1 in both years. The mountainous central parts of the KGRV with Andosol/Nitisols soils and high rainfall experienced a large change of land uses to croplands thus had highest soil loss net change (4.34 t ha −1 yr −1 ). In both years, forests recorded the lowest annual soil loss rates (<3.0 t ha −1 yr −1 ) while most of the ASAL districts presented erosion rates (<8 t ha −1 yr −1 ). Only 34% of all the protected areas were found to have erosion rates <10 t ha −1 yr −1 highlighting the need for effective anti-erosive measures.

Suggested Citation

  • George Watene & Lijun Yu & Yueping Nie & Jianfeng Zhu & Thomas Ngigi & Jean de Dieu Nambajimana & Benson Kenduiywo, 2021. "Water Erosion Risk Assessment in the Kenya Great Rift Valley Region," Sustainability, MDPI, vol. 13(2), pages 1-31, January.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:844-:d:481412
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/2/844/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/2/844/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tomislav Hengl & Gerard B M Heuvelink & Bas Kempen & Johan G B Leenaars & Markus G Walsh & Keith D Shepherd & Andrew Sila & Robert A MacMillan & Jorge Mendes de Jesus & Lulseged Tamene & Jérôme E Tond, 2015. "Mapping Soil Properties of Africa at 250 m Resolution: Random Forests Significantly Improve Current Predictions," PLOS ONE, Public Library of Science, vol. 10(6), pages 1-26, June.
    2. Yves Hategekimana & Mona Allam & Qingyan Meng & Yueping Nie & Elhag Mohamed, 2020. "Quantification of Soil Losses along the Coastal Protected Areas in Kenya," Land, MDPI, vol. 9(5), pages 1-16, May.
    3. Mauro Vigani & Hasan Dudu & Emanuele Ferrari & Alfredo Mainar Causape, 2019. "Estimation of food demand parameters in Kenya. A Quadratic Almost Ideal Demand System (QUAIDS) approach," JRC Research Reports JRC115472, Joint Research Centre.
    4. Tiziano Gomiero, 2016. "Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge," Sustainability, MDPI, vol. 8(3), pages 1-41, March.
    5. Gezahegn Weldu Woldemariam & Anteneh Derribew Iguala & Solomon Tekalign & Ramireddy Uttama Reddy, 2018. "Spatial Modeling of Soil Erosion Risk and Its Implication for Conservation Planning: the Case of the Gobele Watershed, East Hararghe Zone, Ethiopia," Land, MDPI, vol. 7(1), pages 1-25, February.
    6. Zhunusova, Eliza & Kyalo Willy, Daniel & Holm-Müller, Karin, 2013. "An Analysis of Returns to Integrated Soil Conservation Practices in the Lake Naivasha Basin, Kenya," 2013 Fourth International Conference, September 22-25, 2013, Hammamet, Tunisia 160676, African Association of Agricultural Economists (AAAE).
    7. Jean de Dieu Nambajimana & Xiubin He & Ji Zhou & Meta Francis Justine & Jinlin Li & Dil Khurram & Richard Mind’je & Gratien Nsabimana, 2019. "Land Use Change Impacts on Water Erosion in Rwanda," Sustainability, MDPI, vol. 12(1), pages 1-23, December.
    8. Ranghu Wang & Shuwen Zhang & Jiuchun Yang & Luoman Pu & Chaobin Yang & Lingxue Yu & Liping Chang & Kun Bu, 2016. "Integrated Use of GCM, RS, and GIS for the Assessment of Hillslope and Gully Erosion in the Mushi River Sub-Catchment, Northeast China," Sustainability, MDPI, vol. 8(4), pages 1-20, March.
    9. Gezahegn Weldu Woldemariam & Arus Edo Harka, 2020. "Effect of Land Use and Land Cover Change on Soil Erosion in Erer Sub-Basin, Northeast Wabi Shebelle Basin, Ethiopia," Land, MDPI, vol. 9(4), pages 1-25, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tikuye, Birhan Getachew & Gill, Laurence & Rusnak, Milos & Manjunatha, Busnur R., 2023. "Modelling the impacts of changing land use and climate on sediment and nutrient retention in Lake Tana Basin, Upper Blue Nile River Basin, Ethiopia," Ecological Modelling, Elsevier, vol. 482(C).
    2. Dulias Renata, 2022. "Anthropogenic and natural factors influencing African World Heritage sites," Environmental & Socio-economic Studies, Sciendo, vol. 10(3), pages 67-84, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Susanta Das & Proloy Deb & Pradip Kumar Bora & Prafull Katre, 2020. "Comparison of RUSLE and MMF Soil Loss Models and Evaluation of Catchment Scale Best Management Practices for a Mountainous Watershed in India," Sustainability, MDPI, vol. 13(1), pages 1-22, December.
    2. Dang, Hai-Anh & Carletto, Calogero & Gourlay, Sydney & Abanokova, Kseniya, 2024. "Addressing Soil Quality Data Gaps with Imputation: Evidence from Ethiopia and Uganda," GLO Discussion Paper Series 1445, Global Labor Organization (GLO).
    3. Meyer, Maximilian & Hulke, Carolin & Kamwi, Jonathan & Kolem, Hannah & Börner, Jan, 2022. "Spatially heterogeneous effects of collective action on environmental dependence in Namibia’s Zambezi region," World Development, Elsevier, vol. 159(C).
    4. Timothy E. Crews & Douglas J. Cattani, 2018. "Strategies, Advances, and Challenges in Breeding Perennial Grain Crops," Sustainability, MDPI, vol. 10(7), pages 1-7, June.
    5. Io Carydi & Athanasios Koutsianas & Marios Desyllas, 2023. "People, Crops, and Bee Farming: Landscape Models for a Symbiotic Network in Greece," Land, MDPI, vol. 12(2), pages 1-25, February.
    6. Sabastine Ugbemuna Ugbaje & Thomas F.A. Bishop, 2020. "Hydrological Control of Vegetation Greenness Dynamics in Africa: A Multivariate Analysis Using Satellite Observed Soil Moisture, Terrestrial Water Storage and Precipitation," Land, MDPI, vol. 9(1), pages 1-15, January.
    7. Danilo Đokić & Bojan Matkovski & Marija Jeremić & Ivan Đurić, 2022. "Land Productivity and Agri-Environmental Indicators: A Case Study of Western Balkans," Land, MDPI, vol. 11(12), pages 1-13, December.
    8. Joachim Eisenberg & Fabrice A. Muvundja, 2020. "Quantification of Erosion in Selected Catchment Areas of the Ruzizi River (DRC) Using the (R)USLE Model," Land, MDPI, vol. 9(4), pages 1-18, April.
    9. Chantal M. J. Hendriks & Harry S. Gibson & Anna Trett & André Python & Daniel J. Weiss & Anton Vrieling & Michael Coleman & Peter W. Gething & Penny A. Hancock & Catherine L. Moyes, 2019. "Mapping Geospatial Processes Affecting the Environmental Fate of Agricultural Pesticides in Africa," IJERPH, MDPI, vol. 16(19), pages 1-22, September.
    10. Carlos Manuel Hernández & Aliou Faye & Mamadou Ousseynou Ly & Zachary P. Stewart & P. V. Vara Prasad & Leonardo Mendes Bastos & Luciana Nieto & Ana J. P. Carcedo & Ignacio Antonio Ciampitti, 2021. "Soil and Climate Characterization to Define Environments for Summer Crops in Senegal," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    11. Marco Bascietto & Enrico Santangelo & Claudio Beni, 2021. "Spatial Variations of Vegetation Index from Remote Sensing Linked to Soil Colloidal Status," Land, MDPI, vol. 10(1), pages 1-15, January.
    12. Ravic Nijbroek & Kristin Piikki & Mats Söderström & Bas Kempen & Katrine G. Turner & Simeon Hengari & John Mutua, 2018. "Soil Organic Carbon Baselines for Land Degradation Neutrality: Map Accuracy and Cost Tradeoffs with Respect to Complexity in Otjozondjupa, Namibia," Sustainability, MDPI, vol. 10(5), pages 1-20, May.
    13. Yuxin Cen & Bin Zhang & Jun Luo & Qingchun Deng & Hui Liu & Lei Wang, 2022. "Influence of Topographic Factors on the Characteristics of Gully Systems in Mountainous Areas of Ningnan Dry-Hot Valley, SW China," IJERPH, MDPI, vol. 19(14), pages 1-17, July.
    14. Leroux, L. & Falconnier, G.N. & Diouf, A.A. & Ndao, B. & Gbodjo, J.E. & Tall, L. & Balde, A.A. & Clermont-Dauphin, C. & Bégué, A. & Affholder, F. & Roupsard, O., 2020. "Using remote sensing to assess the effect of trees on millet yield in complex parklands of Central Senegal," Agricultural Systems, Elsevier, vol. 184(C).
    15. Rogna, Marco, 2023. "The Effects of Rising Prices on Corn Production in Western African Countries," 97th Annual Conference, March 27-29, 2023, Warwick University, Coventry, UK 334549, Agricultural Economics Society - AES.
    16. Berazneva, Julia & McBride, Linden & Sheahan, Megan & Guerena, David, 2016. "Perceived, measured, and estimated soil fertility in east Africa: Implications for farmers and researchers," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235466, Agricultural and Applied Economics Association.
    17. Rufino, Marta M. & Albouy, Camille & Brind'Amour, Anik, 2021. "Which spatial interpolators I should use? A case study applying to marine species," Ecological Modelling, Elsevier, vol. 449(C).
    18. Jean Baptiste Nsengiyumva & Geping Luo & Egide Hakorimana & Richard Mind'je & Aboubakar Gasirabo & Valentine Mukanyandwi, 2019. "Comparative Analysis of Deterministic and Semiquantitative Approaches for Shallow Landslide Risk Modeling in Rwanda," Risk Analysis, John Wiley & Sons, vol. 39(11), pages 2576-2595, November.
    19. Luoman Pu & Shuwen Zhang & Jiuchun Yang & Liping Chang & Shuting Bai, 2019. "Spatio-Temporal Dynamics of Maize Potential Yield and Yield Gaps in Northeast China from 1990 to 2015," IJERPH, MDPI, vol. 16(7), pages 1-18, April.
    20. Akpoti, Komlavi & Groen, Thomas & Dossou-Yovo, Elliott & Kabo-bah, Amos T. & Zwart, Sander J., 2022. "Climate change-induced reduction in agricultural land suitability of West-Africa's inland valley landscapes," Agricultural Systems, Elsevier, vol. 200(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:2:p:844-:d:481412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.