IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i15p6333-d1441888.html
   My bibliography  Save this article

Prediction of Slope Safety Factor Based on Attention Mechanism-Enhanced CNN-GRU

Author

Listed:
  • Qi Da

    (School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, China)

  • Ying Chen

    (School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, China)

  • Bing Dai

    (School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, China)

  • Danli Li

    (School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, China)

  • Longqiang Fan

    (School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, China)

Abstract

This paper proposes a new method for predicting slope safety factors that combines convolutional neural networks (CNNs), gated recurrent units (GRUs), and attention mechanisms. This method can better capture long-term dependencies, enhance the ability to model sequential data, and reduce the dependence on noisy data, thereby reducing the risk of overfitting. The goal is to improve the accuracy of slope safety factor prediction, detect potential slope stability issues in a timely manner, and take corresponding preventive and control measures to ensure the long-term stability and safety of infrastructure and promote sustainable development. The Pearson correlation coefficient is used to analyze the relationship between the target safety factor and the collected parameters. A one-dimensional CNN layer is used to extract high-dimensional features from the input data, and then a GRU layer is used to capture the correlation between parameters in the sequence. Finally, an attention mechanism is introduced to optimize the weights of the GRU output, enhance the influence of key information, and optimize the overall prediction model. The performance of the proposed model is evaluated using metrics such as the mean absolute error (MAE), mean absolute percentage error (MAPE), mean squared error (MSE), root-mean-square error (RMSE), and R 2 . The results show that the CNN-GRU-SE model outperforms the GRU, CNN, and CNN-GRU models in terms of prediction accuracy for slope safety factors, with improvements of 4%, 2%, and 1%, respectively. Overall, the research in this paper makes valuable contributions to the field of slope safety factor prediction, and the proposed method also has the potential to be extended to other time-series prediction fields, providing support for a wide range of engineering applications and further promoting the realization of sustainable development.

Suggested Citation

  • Qi Da & Ying Chen & Bing Dai & Danli Li & Longqiang Fan, 2024. "Prediction of Slope Safety Factor Based on Attention Mechanism-Enhanced CNN-GRU," Sustainability, MDPI, vol. 16(15), pages 1-23, July.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6333-:d:1441888
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/15/6333/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/15/6333/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arsalan Mahmoodzadeh & Mokhtar Mohammadi & Hunar Farid Hama Ali & Hawkar Hashim Ibrahim & Sazan Nariman Abdulhamid & Hamid Reza Nejati, 2022. "Prediction of safety factors for slope stability: comparison of machine learning techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1771-1799, March.
    2. Zaobao Liu & Jianfu Shao & Weiya Xu & Hongjie Chen & Yu Zhang, 2014. "An extreme learning machine approach for slope stability evaluation and prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 73(2), pages 787-804, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed Hassan Saad & Haslinda Nahazanan & Badronnisa Yusuf & Siti Fauziah Toha & Ahmed Alnuaim & Ahmed El-Mouchi & Mohamed Elseknidy & Angham Ali Mohammed, 2023. "A Systematic Review of Machine Learning Techniques and Applications in Soil Improvement Using Green Materials," Sustainability, MDPI, vol. 15(12), pages 1-37, June.
    2. Hossein Moayedi & Amir Mosavi, 2021. "An Innovative Metaheuristic Strategy for Solar Energy Management through a Neural Networks Framework," Energies, MDPI, vol. 14(4), pages 1-18, February.
    3. He Jia & Sherong Zhang & Chao Wang & Xiaohua Wang & Zhonggang Ma & Yaosheng Tan, 2023. "MSC-1DCNN-based homogeneous slope stability state prediction method integrated with empirical data," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 729-753, August.
    4. Shakti Suman & S. Z. Khan & S. K. Das & S. K. Chand, 2016. "Slope stability analysis using artificial intelligence techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 84(2), pages 727-748, November.
    5. Hossein Moayedi & Amir Mosavi, 2021. "Electrical Power Prediction through a Combination of Multilayer Perceptron with Water Cycle Ant Lion and Satin Bowerbird Searching Optimizers," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    6. Daxing Lei & Yaoping Zhang & Zhigang Lu & Hang Lin & Zheyuan Jiang, 2024. "Predicting Factor of Safety of Slope Using an Improved Support Vector Machine Regression Model," Mathematics, MDPI, vol. 12(20), pages 1-17, October.
    7. Hossein Moayedi & Amir Mosavi, 2021. "Synthesizing Multi-Layer Perceptron Network with Ant Lion Biogeography-Based Dragonfly Algorithm Evolutionary Strategy Invasive Weed and League Champion Optimization Hybrid Algorithms in Predicting He," Sustainability, MDPI, vol. 13(6), pages 1-20, March.
    8. Jian Zhou & Xibing Li & Hani Mitri, 2015. "Comparative performance of six supervised learning methods for the development of models of hard rock pillar stability prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(1), pages 291-316, October.
    9. Sina Shaffiee Haghshenas & Sami Shaffiee Haghshenas & Zong Woo Geem & Tae-Hyung Kim & Reza Mikaeil & Luigi Pugliese & Antonello Troncone, 2021. "Application of Harmony Search Algorithm to Slope Stability Analysis," Land, MDPI, vol. 10(11), pages 1-12, November.
    10. Arsalan Mahmoodzadeh & Mokhtar Mohammadi & Hunar Farid Hama Ali & Hawkar Hashim Ibrahim & Sazan Nariman Abdulhamid & Hamid Reza Nejati, 2022. "Prediction of safety factors for slope stability: comparison of machine learning techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(2), pages 1771-1799, March.
    11. Xianfeng Li & Mayuko Nishio & Kentaro Sugawara & Shoji Iwanaga & Pang-jo Chun, 2023. "Surrogate Model Development for Slope Stability Analysis Using Machine Learning," Sustainability, MDPI, vol. 15(14), pages 1-36, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:15:p:6333-:d:1441888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.