IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v18y2025i1p23-d1562935.html
   My bibliography  Save this article

Credit Card Default Prediction: An Empirical Analysis on Predictive Performance Using Statistical and Machine Learning Methods

Author

Listed:
  • Rakshith Bhandary

    (Department of Commerce, Manipal Academy of Higher Education, Manipal 567104, Karnataka, India)

  • Bidyut Kumar Ghosh

    (Department of Commerce, Manipal Academy of Higher Education, Manipal 567104, Karnataka, India)

Abstract

This article compares the predictive capabilities of six models, namely, linear discriminant analysis (LDA), logistic regression (LR), support vector machine (SVM), XGBoost, random forest (RF), and deep neural network (DNN), to predict the default behavior of credit card holders in Taiwan using data from the UCI machine learning database. The Python programming language was used for data analysis. Statistical methods were compared with machine learning algorithms using the confusion matrix measured in metric terms of prediction accuracy, sensitivity, specificity, precision, G-mean, F1 score, ROC, and AUC. The dataset contained 30,000 credit card users’ information, with 6636 default observations and 23,364 nondefault cases. The study results found that modern machine learning methods outperformed traditional statistical methods in terms of predictive performance measured by the F1 score, G-mean, and AUC. Traditional methods like logistic regression were marginally better than linear discriminant analysis and support vector machines in terms of the predictive performance measured by the area under the receiver operating characteristic curve. In the modern machine learning methods, deep neural network was better in the predictive performance metrics when compared with XGBoost and random forest methods.

Suggested Citation

  • Rakshith Bhandary & Bidyut Kumar Ghosh, 2025. "Credit Card Default Prediction: An Empirical Analysis on Predictive Performance Using Statistical and Machine Learning Methods," JRFM, MDPI, vol. 18(1), pages 1-20, January.
  • Handle: RePEc:gam:jjrfmx:v:18:y:2025:i:1:p:23-:d:1562935
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/18/1/23/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/18/1/23/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:18:y:2025:i:1:p:23-:d:1562935. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.