IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v17y2024i4p141-d1367659.html
   My bibliography  Save this article

Assessing Machine Learning Techniques for Predicting Banking Crises in India

Author

Listed:
  • Sreenivasulu Puli

    (Department of Economics and Finance, Birla Institute of Technology & Science, Hyderabad 500078, India)

  • Nagaraju Thota

    (Department of Economics and Finance, Birla Institute of Technology & Science, Hyderabad 500078, India)

  • A. C. V. Subrahmanyam

    (Department of Economics and Finance, Birla Institute of Technology & Science, Hyderabad 500078, India)

Abstract

The historical prevalence of banking crises and their profound impact on global economies underscores the imperative for policy makers to refine their crisis forecasting frameworks. Against this backdrop, the present study endeavors to predict potential banking crises in India by leveraging a spectrum of artificial intelligence and machine learning techniques (AI-ML). These techniques encompass logistic regression, random forest, naïve Bayes, gradient boosting, support vector machine, neural networks, K-nearest neighbors, and decision trees. Initially, a banking fragility index was constructed utilizing monthly banking data spanning 2002 to 2023, demarcating the periods of crisis and stability. Subsequently, an extensive array of early warning indicators (EWIs) encompassing asset prices, macroeconomic factors, external influences, and credit-related variables were employed to forecast crisis periods. Our findings reveal that AI-ML models exhibit reasonable accuracy in predicting banking crises. Moreover, advanced model performance metrics highlight neural networks and random forest models as particularly effective in crisis prediction, surpassing other methodologies. Notably, among the EWIs, variables related to credit, interest rates, and liquidity emerge as possessing relatively higher information value in discerning fragilities within the Indian banking system. Importantly, the methodological framework presented herein can be extrapolated for banking crisis prediction in other economies.

Suggested Citation

  • Sreenivasulu Puli & Nagaraju Thota & A. C. V. Subrahmanyam, 2024. "Assessing Machine Learning Techniques for Predicting Banking Crises in India," JRFM, MDPI, vol. 17(4), pages 1-16, March.
  • Handle: RePEc:gam:jjrfmx:v:17:y:2024:i:4:p:141-:d:1367659
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/17/4/141/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/17/4/141/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyman P. Minsky, 1977. "The Financial Instability Hypothesis: An Interpretation of Keynes and an Alternative to“Standard” Theory," Challenge, Taylor & Francis Journals, vol. 20(1), pages 20-27, March.
    2. Carmen M. Reinhart & Kenneth S. Rogoff, 2014. "This Time is Different: A Panoramic View of Eight Centuries of Financial Crises," Annals of Economics and Finance, Society for AEF, vol. 15(2), pages 215-268, November.
    3. Reinhart, Carmen & Rogoff, Kenneth, 2009. "This Time It’s Different: Eight Centuries of Financial Folly-Preface," MPRA Paper 17451, University Library of Munich, Germany.
    4. Carmen M. Reinhart & Graciela L. Kaminsky, 1999. "The Twin Crises: The Causes of Banking and Balance-of-Payments Problems," American Economic Review, American Economic Association, vol. 89(3), pages 473-500, June.
    5. Carmen M. Reinhart & Kenneth S. Rogoff, 2009. "Varieties of Crises and Their Dates," Introductory Chapters, in: This Time Is Different: Eight Centuries of Financial Folly, Princeton University Press.
    6. Reinhart, Carmen & Rogoff, Kenneth, 2009. "This Time It’s Different: Eight Centuries of Financial Folly-Chapter 1," MPRA Paper 17452, University Library of Munich, Germany.
    7. Òscar Jordà & Moritz Schularick & Alan M Taylor, 2011. "Financial Crises, Credit Booms, and External Imbalances: 140 Years of Lessons," IMF Economic Review, Palgrave Macmillan;International Monetary Fund, vol. 59(2), pages 340-378, June.
    8. Noryati Ahmad & Nurul Farhana Mazlan, 2015. "Banking Fragility Sector Index and Determinants: A Comparison between Local Based and Foreign Based Commercial Banks in Malaysia," International Journal of Business and Administrative Studies, Professor Dr. Bahaudin G. Mujtaba, vol. 1(1), pages 5-17.
    9. Filippopoulou, Chryssanthi & Galariotis, Emilios & Spyrou, Spyros, 2020. "An early warning system for predicting systemic banking crises in the Eurozone: A logit regression approach," Journal of Economic Behavior & Organization, Elsevier, vol. 172(C), pages 344-363.
    10. Caggiano, Giovanni & Calice, Pietro & Leonida, Leone, 2014. "Early warning systems and systemic banking crises in low income countries: A multinomial logit approach," Journal of Banking & Finance, Elsevier, vol. 47(C), pages 258-269.
    11. Kim Ristolainen, 2016. "The relationship between distance-to-default and CDS spreads as measures of default risk for European banks," Journal of Banking and Financial Economics, University of Warsaw, Faculty of Management, vol. 1(5), pages 121-143, June.
    12. Saibal Ghosh, 2011. "A simple index of banking fragility: application to Indian data," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 12(2), pages 112-120, March.
    13. Roy, Saktinil & Kemme, David M., 2011. "What is really common in the run-up to banking crises?," Economics Letters, Elsevier, vol. 113(3), pages 211-214.
    14. Serwa, Dobromił, 2013. "Identifying multiple regimes in the model of credit to households," International Review of Economics & Finance, Elsevier, vol. 27(C), pages 198-208.
    15. Claudio Borio & Philip Lowe, 2002. "Assessing the risk of banking crises," BIS Quarterly Review, Bank for International Settlements, December.
    16. Tanaka, Katsuyuki & Kinkyo, Takuji & Hamori, Shigeyuki, 2016. "Random forests-based early warning system for bank failures," Economics Letters, Elsevier, vol. 148(C), pages 118-121.
    17. Beutel, Johannes & List, Sophia & von Schweinitz, Gregor, 2019. "Does machine learning help us predict banking crises?," Journal of Financial Stability, Elsevier, vol. 45(C).
    18. Carmona, Pedro & Climent, Francisco & Momparler, Alexandre, 2019. "Predicting failure in the U.S. banking sector: An extreme gradient boosting approach," International Review of Economics & Finance, Elsevier, vol. 61(C), pages 304-323.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Casabianca, Elizabeth Jane & Catalano, Michele & Forni, Lorenzo & Giarda, Elena & Passeri, Simone, 2022. "A machine learning approach to rank the determinants of banking crises over time and across countries," Journal of International Money and Finance, Elsevier, vol. 129(C).
    2. Xianglong Liu, 2023. "Towards Better Banking Crisis Prediction: Could an Automatic Variable Selection Process Improve the Performance?," The Economic Record, The Economic Society of Australia, vol. 99(325), pages 288-312, June.
    3. Kauko, Karlo, 2014. "How to foresee banking crises? A survey of the empirical literature," Economic Systems, Elsevier, vol. 38(3), pages 289-308.
    4. Hartwig, Benny & Meinerding, Christoph & Schüler, Yves S., 2021. "Identifying indicators of systemic risk," Journal of International Economics, Elsevier, vol. 132(C).
    5. Chung‐Hua Shen & Hsing‐Hua Hsu, 2022. "The determinants of Asian banking crises—Application of the panel threshold logit model," International Review of Finance, International Review of Finance Ltd., vol. 22(1), pages 248-277, March.
    6. Cesa-Bianchi, Ambrogio & Eguren Martin, Fernando & Thwaites, Gregory, 2019. "Foreign booms, domestic busts: The global dimension of banking crises," Journal of Financial Intermediation, Elsevier, vol. 37(C), pages 58-74.
    7. Beutel, Johannes & List, Sophia & von Schweinitz, Gregor, 2018. "An evaluation of early warning models for systemic banking crises: Does machine learning improve predictions?," Discussion Papers 48/2018, Deutsche Bundesbank.
    8. Wee Chian Koh & M. Ayhan Kose & Peter S. Nagle & Franziska L. Ohnsorge & Naotaka Sugawara, 2020. "Debt and Financial Crises," Koç University-TUSIAD Economic Research Forum Working Papers 2001, Koc University-TUSIAD Economic Research Forum.
    9. Jon Danielsson & Marcela Valenzuela & Ilknur Zer, 2018. "Learning from History: Volatility and Financial Crises," The Review of Financial Studies, Society for Financial Studies, vol. 31(7), pages 2774-2805.
    10. Lin, Ching-Chung & Yang, Shou-Lin, 2016. "Bank fundamentals, economic conditions, and bank failures in East Asian countries," Economic Modelling, Elsevier, vol. 52(PB), pages 960-966.
    11. Filippopoulou, Chryssanthi & Galariotis, Emilios & Spyrou, Spyros, 2020. "An early warning system for predicting systemic banking crises in the Eurozone: A logit regression approach," Journal of Economic Behavior & Organization, Elsevier, vol. 172(C), pages 344-363.
    12. Herradi, Mehdi El & Leroy, Aurélien, 2022. "The rich, poor, and middle class: Banking crises and income distribution," Journal of International Money and Finance, Elsevier, vol. 127(C).
    13. Ebrahimi Kahou, Mahdi & Lehar, Alfred, 2017. "Macroprudential policy: A review," Journal of Financial Stability, Elsevier, vol. 29(C), pages 92-105.
    14. Catão, Luis A.V. & Milesi-Ferretti, Gian Maria, 2014. "External liabilities and crises," Journal of International Economics, Elsevier, vol. 94(1), pages 18-32.
    15. Akhilesh K. Verma & Rajeswari Sengupta, 2021. "Interlinkages between external debt financing, credit cycles and output fluctuations in emerging market economies," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 157(4), pages 965-1001, November.
    16. John Nkwoma Inekwe, 2019. "The exploration of economic crises: parameter uncertainty and predictive ability," Scottish Journal of Political Economy, Scottish Economic Society, vol. 66(2), pages 290-313, May.
    17. Tölö, Eero, 2020. "Predicting systemic financial crises with recurrent neural networks," Journal of Financial Stability, Elsevier, vol. 49(C).
    18. Gertler, Pavel & Hofmann, Boris, 2018. "Monetary facts revisited," Journal of International Money and Finance, Elsevier, vol. 86(C), pages 154-170.
    19. de Haan, Jakob & Fang, Yi & Jing, Zhongbo, 2020. "Does the risk on banks’ balance sheets predict banking crises? New evidence for developing countries," International Review of Economics & Finance, Elsevier, vol. 68(C), pages 254-268.
    20. Yusuf Yıldırım & Anirban Sanyal, 2022. "Evaluating the Effectiveness of Early Warning Indicators: An Application of Receiver Operating Characteristic Curve Approach to Panel Data," Scientific Annals of Economics and Business (continues Analele Stiintifice), Alexandru Ioan Cuza University, Faculty of Economics and Business Administration, vol. 69(4), pages 557-597, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:17:y:2024:i:4:p:141-:d:1367659. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.