IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v14y2021i10p470-d650839.html
   My bibliography  Save this article

Failure Prediction in the Condition of Information Asymmetry: Tax Arrears as a Substitute When Financial Ratios Are Outdated

Author

Listed:
  • Oliver Lukason

    (School of Economics and Business Administration, University of Tartu, 51009 Tartu, Estonia)

  • Germo Valgenberg

    (School of Economics and Business Administration, University of Tartu, 51009 Tartu, Estonia)

Abstract

This paper aims to study the usefulness of applying tax arrears in failure prediction, when annual reports to calculate financial ratios are outdated. Three known classification methods from the failure prediction literature are applied to the whole population dataset from Estonia, incorporating various tax arrears variables and financial ratios. The results indicate that accuracies remarkably exceeding those of models based on financial ratios can be obtained with variables portraying the average, maximum, and duration contexts of tax arrears. The main contribution of the current study is that it provides a proof of concept that accounting for the dynamics of payment defaults can lead to useful prediction models in cases in which up-to-date financial reports are not available.

Suggested Citation

  • Oliver Lukason & Germo Valgenberg, 2021. "Failure Prediction in the Condition of Information Asymmetry: Tax Arrears as a Substitute When Financial Ratios Are Outdated," JRFM, MDPI, vol. 14(10), pages 1-13, October.
  • Handle: RePEc:gam:jjrfmx:v:14:y:2021:i:10:p:470-:d:650839
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/14/10/470/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/14/10/470/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lukason, Oliver & Laitinen, Erkki K., 2019. "Firm failure processes and components of failure risk: An analysis of European bankrupt firms," Journal of Business Research, Elsevier, vol. 98(C), pages 380-390.
    2. Balcaen, Sofie & Ooghe, Hubert, 2006. "35 years of studies on business failure: an overview of the classic statistical methodologies and their related problems," The British Accounting Review, Elsevier, vol. 38(1), pages 63-93.
    3. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    4. Mehmet Karan & Aydın Ulucan & Mustafa Kaya, 2013. "Credit risk estimation using payment history data: a comparative study of Turkish retail stores," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(2), pages 479-494, March.
    5. Laitinen, Erkki K., 1999. "Predicting a corporate credit analyst's risk estimate by logistic and linear models," International Review of Financial Analysis, Elsevier, vol. 8(2), pages 97-121, June.
    6. Błażej Prusak, 2018. "Review of Research into Enterprise Bankruptcy Prediction in Selected Central and Eastern European Countries," IJFS, MDPI, vol. 6(3), pages 1-28, June.
    7. Jayasekera, Ranadeva, 2018. "Prediction of company failure: Past, present and promising directions for the future," International Review of Financial Analysis, Elsevier, vol. 55(C), pages 196-208.
    8. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    9. Virgo Süsi & Oliver Lukason, 2019. "Corporate governance and failure risk: evidence from Estonian SME population," Management Research Review, Emerald Group Publishing Limited, vol. 42(6), pages 703-720, February.
    10. Hanlon, Michelle & Heitzman, Shane, 2010. "A review of tax research," Journal of Accounting and Economics, Elsevier, vol. 50(2-3), pages 127-178, December.
    11. Oliver Lukason & Art Andresson, 2019. "Tax Arrears Versus Financial Ratios in Bankruptcy Prediction," JRFM, MDPI, vol. 12(4), pages 1-13, December.
    12. Ciampi, Francesco, 2015. "Corporate governance characteristics and default prediction modeling for small enterprises. An empirical analysis of Italian firms," Journal of Business Research, Elsevier, vol. 68(5), pages 1012-1025.
    13. Francesco Ciampi & Alessandro Giannozzi & Giacomo Marzi & Edward I. Altman, 2021. "Rethinking SME default prediction: a systematic literature review and future perspectives," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2141-2188, March.
    14. Peter Back, 2005. "Explaining financial difficulties based on previous payment behavior, management background variables and financial ratios," European Accounting Review, Taylor & Francis Journals, vol. 14(4), pages 839-868.
    15. Edward I. Altman & Małgorzata Iwanicz-Drozdowska & Erkki K. Laitinen & Arto Suvas, 2020. "A Race for Long Horizon Bankruptcy Prediction," Applied Economics, Taylor & Francis Journals, vol. 52(37), pages 4092-4111, July.
    16. Francesco Ciampi & Valentina Cillo & Fabio Fiano, 2020. "Combining Kohonen maps and prior payment behavior for small enterprise default prediction," Small Business Economics, Springer, vol. 54(4), pages 1007-1039, April.
    17. Oliver Lukason & María-del-Mar Camacho-Miñano, 2019. "Bankruptcy Risk, Its Financial Determinants and Reporting Delays: Do Managers Have Anything to Hide?," Risks, MDPI, vol. 7(3), pages 1-15, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Keijo Kohv & Oliver Lukason, 2021. "What Best Predicts Corporate Bank Loan Defaults? An Analysis of Three Different Variable Domains," Risks, MDPI, vol. 9(2), pages 1-19, January.
    2. Õie Renata Siimon & Oliver Lukason, 2021. "A Decision Support System for Corporate Tax Arrears Prediction," Sustainability, MDPI, vol. 13(15), pages 1-23, July.
    3. Edward I. Altman & Marco Balzano & Alessandro Giannozzi & Stjepan Srhoj, 2023. "Revisiting SME default predictors: The Omega Score," Journal of Small Business Management, Taylor & Francis Journals, vol. 61(6), pages 2383-2417, November.
    4. Oliver Lukason & Art Andresson, 2019. "Tax Arrears Versus Financial Ratios in Bankruptcy Prediction," JRFM, MDPI, vol. 12(4), pages 1-13, December.
    5. Youssef Zizi & Amine Jamali-Alaoui & Badreddine El Goumi & Mohamed Oudgou & Abdeslam El Moudden, 2021. "An Optimal Model of Financial Distress Prediction: A Comparative Study between Neural Networks and Logistic Regression," Risks, MDPI, vol. 9(11), pages 1-24, November.
    6. Theodore Metaxas & Athanasios Romanopoulos, 2023. "A Literature Review on the Financial Determinants of Hotel Default," JRFM, MDPI, vol. 16(7), pages 1-19, July.
    7. Katarina Valaskova & Pavol Durana & Peter Adamko & Jaroslav Jaros, 2020. "Financial Compass for Slovak Enterprises: Modeling Economic Stability of Agricultural Entities," JRFM, MDPI, vol. 13(5), pages 1-16, May.
    8. Tamás Kristóf & Miklós Virág, 2020. "A Comprehensive Review of Corporate Bankruptcy Prediction in Hungary," JRFM, MDPI, vol. 13(2), pages 1-20, February.
    9. Francesco Ciampi & Valentina Cillo & Fabio Fiano, 2020. "Combining Kohonen maps and prior payment behavior for small enterprise default prediction," Small Business Economics, Springer, vol. 54(4), pages 1007-1039, April.
    10. Francesco Ciampi, 2018. "Using Prior Payment Behavior Variables for Small Enterprise Default Prediction Modelling," International Journal of Business and Management, Canadian Center of Science and Education, vol. 13(4), pages 1-57, March.
    11. David Veganzones, 2022. "Corporate failure prediction using threshold‐based models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(5), pages 956-979, August.
    12. Mohammad Mahdi Mousavi & Jamal Ouenniche & Kaoru Tone, 2023. "A dynamic performance evaluation of distress prediction models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(4), pages 756-784, July.
    13. Elena Gregova & Katarina Valaskova & Peter Adamko & Milos Tumpach & Jaroslav Jaros, 2020. "Predicting Financial Distress of Slovak Enterprises: Comparison of Selected Traditional and Learning Algorithms Methods," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
    14. Hui Hu & Milind Sathye, 2015. "Predicting Financial Distress in the Hong Kong Growth Enterprises Market from the Perspective of Financial Sustainability," Sustainability, MDPI, vol. 7(2), pages 1-15, January.
    15. Tomasz Korol, 2019. "Dynamic Bankruptcy Prediction Models for European Enterprises," JRFM, MDPI, vol. 12(4), pages 1-15, December.
    16. Veganzones, David & Séverin, Eric & Chlibi, Souhir, 2023. "Influence of earnings management on forecasting corporate failure," International Journal of Forecasting, Elsevier, vol. 39(1), pages 123-143.
    17. Oliver Lukason & María-del-Mar Camacho-Miñano, 2019. "Bankruptcy Risk, Its Financial Determinants and Reporting Delays: Do Managers Have Anything to Hide?," Risks, MDPI, vol. 7(3), pages 1-15, July.
    18. Dagmar Camska & Jiri Klecka, 2020. "Comparison of Prediction Models Applied in Economic Recession and Expansion," JRFM, MDPI, vol. 13(3), pages 1-16, March.
    19. Xavier Brédart & Eric Séverin & David Veganzones, 2021. "Human resources and corporate failure prediction modeling: Evidence from Belgium," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(7), pages 1325-1341, November.
    20. Boratyńska, Katarzyna & Grzegorzewska, Emilia, 2018. "Bankruptcy prediction in the agribusiness sector: Lessons from quantitative and qualitative approaches," Journal of Business Research, Elsevier, vol. 89(C), pages 175-181.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:14:y:2021:i:10:p:470-:d:650839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.