IDEAS home Printed from https://ideas.repec.org/a/taf/applec/v52y2020i37p4092-4111.html
   My bibliography  Save this article

A Race for Long Horizon Bankruptcy Prediction

Author

Listed:
  • Edward I. Altman
  • Małgorzata Iwanicz-Drozdowska
  • Erkki K. Laitinen
  • Arto Suvas

Abstract

This study compares the accuracy and efficiency of five different estimation methods for predicting financial distress of small and medium-sized enterprises. We apply different methods for a large set of financial and non-financial variables, using filter and wrapper selection, to predict bankruptcy up to 10 years before the event in an open, European economy. Our findings show that logistic regression and neural networks are superior to other approaches. We document how the cost-return ratio considerably affects the location of optimal cut-off points and attainable profit in credit decisions. Once a loan provider selects a particular prediction model, an effort should be made to find the optimal cut-off score to maximize the efficiency of the technique. Indeed, this often involves determining several cut-off levels where the portfolio of products and services exhibits different cost-return characteristics.

Suggested Citation

  • Edward I. Altman & Małgorzata Iwanicz-Drozdowska & Erkki K. Laitinen & Arto Suvas, 2020. "A Race for Long Horizon Bankruptcy Prediction," Applied Economics, Taylor & Francis Journals, vol. 52(37), pages 4092-4111, July.
  • Handle: RePEc:taf:applec:v:52:y:2020:i:37:p:4092-4111
    DOI: 10.1080/00036846.2020.1730762
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/00036846.2020.1730762
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/00036846.2020.1730762?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarbjit Singh Oberoi & Sayan Banerjee, 2023. "Bankruptcy Prediction of Indian Banks Using Advanced Analytics," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 4, pages 22-41.
    2. Elena Gregova & Katarina Valaskova & Peter Adamko & Milos Tumpach & Jaroslav Jaros, 2020. "Predicting Financial Distress of Slovak Enterprises: Comparison of Selected Traditional and Learning Algorithms Methods," Sustainability, MDPI, vol. 12(10), pages 1-17, May.
    3. Youssef Zizi & Amine Jamali-Alaoui & Badreddine El Goumi & Mohamed Oudgou & Abdeslam El Moudden, 2021. "An Optimal Model of Financial Distress Prediction: A Comparative Study between Neural Networks and Logistic Regression," Risks, MDPI, vol. 9(11), pages 1-24, November.
    4. Lucia Svabova & Lucia Michalkova & Marek Durica & Elvira Nica, 2020. "Business Failure Prediction for Slovak Small and Medium-Sized Companies," Sustainability, MDPI, vol. 12(11), pages 1-14, June.
    5. Youssef Zizi & Mohamed Oudgou & Abdeslam El Moudden, 2020. "Determinants and Predictors of SMEs’ Financial Failure: A Logistic Regression Approach," Risks, MDPI, vol. 8(4), pages 1-21, October.
    6. Keijo Kohv & Oliver Lukason, 2021. "What Best Predicts Corporate Bank Loan Defaults? An Analysis of Three Different Variable Domains," Risks, MDPI, vol. 9(2), pages 1-19, January.
    7. Jeremy K. Nguyen & Adam Karg & Abbas Valadkhani & Heath McDonald, 2022. "Predicting individual event attendance with machine learning: a ‘step-forward’ approach," Applied Economics, Taylor & Francis Journals, vol. 54(27), pages 3138-3153, June.
    8. Korangi, Kamesh & Mues, Christophe & Bravo, Cristián, 2023. "A transformer-based model for default prediction in mid-cap corporate markets," European Journal of Operational Research, Elsevier, vol. 308(1), pages 306-320.
    9. Oleksandr Melnychenko, 2020. "Is Artificial Intelligence Ready to Assess an Enterprise’s Financial Security?," JRFM, MDPI, vol. 13(9), pages 1-19, August.
    10. Dariusz Sala & Kostiantyn Pavlov & Olena Pavlova & Anton Demchuk & Liubomur Matiichuk & Dariusz Cichoń, 2023. "Determining of the Bankrupt Contingency as the Level Estimation Method of Western Ukraine Gas Distribution Enterprises’ Competence Capacity," Energies, MDPI, vol. 16(4), pages 1-13, February.
    11. Kamesh Korangi & Christophe Mues & Cristi'an Bravo, 2021. "A transformer-based model for default prediction in mid-cap corporate markets," Papers 2111.09902, arXiv.org, revised Apr 2023.
    12. Oliver Lukason & Germo Valgenberg, 2021. "Failure Prediction in the Condition of Information Asymmetry: Tax Arrears as a Substitute When Financial Ratios Are Outdated," JRFM, MDPI, vol. 14(10), pages 1-13, October.
    13. Ben Jabeur, Sami & Serret, Vanessa, 2023. "Bankruptcy prediction using fuzzy convolutional neural networks," Research in International Business and Finance, Elsevier, vol. 64(C).
    14. Antonio Pelaez-Verdet & Pilar Loscertales-Sanchez, 2021. "Key Ratios for Long-Term Prediction of Hotel Financial Distress and Corporate Default: Survival Analysis for an Economic Stagnation," Sustainability, MDPI, vol. 13(3), pages 1-17, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:applec:v:52:y:2020:i:37:p:4092-4111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAEC20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.