IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v13y2020i9p186-d400757.html
   My bibliography  Save this article

True versus Spurious Long Memory in Cryptocurrencies

Author

Listed:
  • Dooruj Rambaccussing

    (School of Business, University of Dundee, Dundee DD1 3BH, UK)

  • Murat Mazibas

    (School of Business, University of Dundee, Dundee DD1 3BH, UK)

Abstract

We test whether the selected cryptocurrencies exhibit long memory behavior in returns and volatility. We use data on five most traded cryptocurrencies: Bitcoin, Litecoin, Ethereum, Bitcoin Cash, and XRP. Using recent tests of long memory developed against persistent and nonlinear alternatives, this paper finds that long memory is mostly rejected in returns. The tests fail to reject the null hypothesis of long memory in most cases across different volatility proxies and cryptocurrencies. The estimated memory parameters show that volatility is persistent, and when volatility is measured by log range, it is borderline nonstationary.

Suggested Citation

  • Dooruj Rambaccussing & Murat Mazibas, 2020. "True versus Spurious Long Memory in Cryptocurrencies," JRFM, MDPI, vol. 13(9), pages 1-11, August.
  • Handle: RePEc:gam:jjrfmx:v:13:y:2020:i:9:p:186-:d:400757
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/13/9/186/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/13/9/186/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sibbertsen, Philipp & Leschinski, Christian & Busch, Marie, 2018. "A multivariate test against spurious long memory," Journal of Econometrics, Elsevier, vol. 203(1), pages 33-49.
    2. Urquhart, Andrew, 2017. "Price clustering in Bitcoin," Economics Letters, Elsevier, vol. 159(C), pages 145-148.
    3. Granger, Clive W. J. & Hyung, Namwon, 2004. "Occasional structural breaks and long memory with an application to the S&P 500 absolute stock returns," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 399-421, June.
    4. Davidson James & Rambaccussing Dooruj, 2015. "A Test of the Long Memory Hypothesis Based on Self-Similarity," Journal of Time Series Econometrics, De Gruyter, vol. 7(2), pages 115-141, July.
    5. Diebold, Francis X. & Inoue, Atsushi, 2001. "Long memory and regime switching," Journal of Econometrics, Elsevier, vol. 105(1), pages 131-159, November.
    6. Lahmiri, Salim & Bekiros, Stelios & Salvi, Antonio, 2018. "Long-range memory, distributional variation and randomness of bitcoin volatility," Chaos, Solitons & Fractals, Elsevier, vol. 107(C), pages 43-48.
    7. Zhongjun Qu, 2011. "A Test Against Spurious Long Memory," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 29(3), pages 423-438, July.
    8. Clifford M. Hurvich & Rohit S. Deo, 1999. "Plug‐in Selection of the Number of Frequencies in Regression Estimates of the Memory Parameter of a Long‐memory Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 20(3), pages 331-341, May.
    9. Wenger, Kai & Leschinski, Christian & Sibbertsen, Philipp, 2018. "A simple test on structural change in long-memory time series," Economics Letters, Elsevier, vol. 163(C), pages 90-94.
    10. Ohanissian, Arek & Russell, Jeffrey R. & Tsay, Ruey S., 2008. "True or Spurious Long Memory? A New Test," Journal of Business & Economic Statistics, American Statistical Association, vol. 26, pages 161-175, April.
    11. Annika Betken, 2016. "Testing for Change-Points in Long-Range Dependent Time Series by Means of a Self-Normalized Wilcoxon Test," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(6), pages 785-809, November.
    12. Urquhart, Andrew, 2016. "The inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 148(C), pages 80-82.
    13. Rambaccussing, Dooruj & Davidson, James, 2015. "A test of long memory hypothesis based on self-similarity," 2007 Annual Meeting, July 29-August 1, 2007, Portland, Oregon TN 2015-81, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    14. Davidson, James & Sibbertsen, Philipp, 2009. "Tests of bias in log-periodogram regression," Economics Letters, Elsevier, vol. 102(2), pages 83-86, February.
    15. Elie Bouri & Luis A. Gil‐Alana & Rangan Gupta & David Roubaud, 2019. "Modelling long memory volatility in the Bitcoin market: Evidence of persistence and structural breaks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(1), pages 412-426, January.
    16. Katsumi Shimotsu & Peter C. B. Phillips, 2002. "Pooled Log Periodogram Regression," Journal of Time Series Analysis, Wiley Blackwell, vol. 23(1), pages 57-93, January.
    17. Phillip, Andrew & Chan, Jennifer & Peiris, Shelton, 2019. "On long memory effects in the volatility measure of Cryptocurrencies," Finance Research Letters, Elsevier, vol. 28(C), pages 95-100.
    18. John Geweke & Susan Porter‐Hudak, 1983. "The Estimation And Application Of Long Memory Time Series Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 4(4), pages 221-238, July.
    19. Fabrizio Iacone & Stephen J. Leybourne & A. M. Robert Taylor, 2014. "A FIXED- b TEST FOR A BREAK IN LEVEL AT AN UNKNOWN TIME UNDER FRACTIONAL INTEGRATION," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(1), pages 40-54, January.
    20. Herold Dehling & Aeneas Rooch & Murad S. Taqqu, 2013. "Non-Parametric Change-Point Tests for Long-Range Dependent Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(1), pages 153-173, March.
    21. Nadarajah, Saralees & Chu, Jeffrey, 2017. "On the inefficiency of Bitcoin," Economics Letters, Elsevier, vol. 150(C), pages 6-9.
    22. Cheah, Eng-Tuck & Fry, John, 2015. "Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin," Economics Letters, Elsevier, vol. 130(C), pages 32-36.
    23. Katsiampa, Paraskevi, 2017. "Volatility estimation for Bitcoin: A comparison of GARCH models," Economics Letters, Elsevier, vol. 158(C), pages 3-6.
    24. Mensi, Walid & Al-Yahyaee, Khamis Hamed & Kang, Sang Hoon, 2019. "Structural breaks and double long memory of cryptocurrency prices: A comparative analysis from Bitcoin and Ethereum," Finance Research Letters, Elsevier, vol. 29(C), pages 222-230.
    25. Phillip, Andrew & Chan, Jennifer S.K. & Peiris, Shelton, 2018. "A new look at Cryptocurrencies," Economics Letters, Elsevier, vol. 163(C), pages 6-9.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.
    2. Walid Chkili, 2021. "Modeling Bitcoin price volatility: long memory vs Markov switching," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 433-448, September.
    3. Thanasis Stengos, 2021. "Recent Developments in Cryptocurrency Markets: Co-Movements, Spillovers and Forecasting," JRFM, MDPI, vol. 14(3), pages 1-3, February.
    4. Kerolly Kedma Felix do Nascimento & Fábio Sandro dos Santos & Jader Silva Jale & Silvio Fernando Alves Xavier Júnior & Tiago A. E. Ferreira, 2023. "Extracting Rules via Markov Chains for Cryptocurrencies Returns Forecasting," Computational Economics, Springer;Society for Computational Economics, vol. 61(3), pages 1095-1114, March.
    5. Assaf, Ata & Mokni, Khaled & Yousaf, Imran & Bhandari, Avishek, 2023. "Long memory in the high frequency cryptocurrency markets using fractal connectivity analysis: The impact of COVID-19," Research in International Business and Finance, Elsevier, vol. 64(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.
    2. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    3. Kai Wenger & Christian Leschinski & Philipp Sibbertsen, 2019. "Change-in-mean tests in long-memory time series: a review of recent developments," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(2), pages 237-256, June.
    4. Kunal Saha & Vinodh Madhavan & Chandrashekhar G. R. & David McMillan, 2020. "Pitfalls in long memory research," Cogent Economics & Finance, Taylor & Francis Journals, vol. 8(1), pages 1733280-173, January.
    5. Gil-Alana, Luis Alberiko & Abakah, Emmanuel Joel Aikins & Rojo, María Fátima Romero, 2020. "Cryptocurrencies and stock market indices. Are they related?," Research in International Business and Finance, Elsevier, vol. 51(C).
    6. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    7. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    8. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    9. Abakah, Emmanuel Joel Aikins & Gil-Alana, Luis Alberiko & Madigu, Godfrey & Romero-Rojo, Fatima, 2020. "Volatility persistence in cryptocurrency markets under structural breaks," International Review of Economics & Finance, Elsevier, vol. 69(C), pages 680-691.
    10. Lennart Ante, 2020. "A place next to Satoshi: foundations of blockchain and cryptocurrency research in business and economics," Scientometrics, Springer;Akadémiai Kiadó, vol. 124(2), pages 1305-1333, August.
    11. Walid Chkili, 2021. "Modeling Bitcoin price volatility: long memory vs Markov switching," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 11(3), pages 433-448, September.
    12. Assaf, Ata & Mokni, Khaled & Yousaf, Imran & Bhandari, Avishek, 2023. "Long memory in the high frequency cryptocurrency markets using fractal connectivity analysis: The impact of COVID-19," Research in International Business and Finance, Elsevier, vol. 64(C).
    13. Christie Smith & Aaron Kumar, 2018. "Crypto‐Currencies – An Introduction To Not‐So‐Funny Moneys," Journal of Economic Surveys, Wiley Blackwell, vol. 32(5), pages 1531-1559, December.
    14. Sibbertsen, Philipp & Leschinski, Christian & Busch, Marie, 2018. "A multivariate test against spurious long memory," Journal of Econometrics, Elsevier, vol. 203(1), pages 33-49.
    15. Kajtazi, Anton & Moro, Andrea, 2019. "The role of bitcoin in well diversified portfolios: A comparative global study," International Review of Financial Analysis, Elsevier, vol. 61(C), pages 143-157.
    16. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    17. Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
    18. Omane-Adjepong, Maurice & Alagidede, Paul & Akosah, Nana Kwame, 2019. "Wavelet time-scale persistence analysis of cryptocurrency market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 105-120.
    19. Leonardo Ieracitano Vieira & Márcio Poletti Laurini, 2023. "Time-varying higher moments in Bitcoin," Digital Finance, Springer, vol. 5(2), pages 231-260, June.
    20. Gkillas, Konstantinos & Katsiampa, Paraskevi, 2018. "An application of extreme value theory to cryptocurrencies," Economics Letters, Elsevier, vol. 164(C), pages 109-111.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:13:y:2020:i:9:p:186-:d:400757. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.