IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v38y2011i1p57-70.html
   My bibliography  Save this article

A flexible model for survival data with a cure rate: a Bayesian approach

Author

Listed:
  • Vicente Cancho
  • Josemar Rodrigues
  • Mario de Castro

Abstract

In this paper we deal with a Bayesian analysis for right-censored survival data suitable for populations with a cure rate. We consider a cure rate model based on the negative binomial distribution, encompassing as a special case the promotion time cure model. Bayesian analysis is based on Markov chain Monte Carlo (MCMC) methods. We also present some discussion on model selection and an illustration with a real data set.

Suggested Citation

  • Vicente Cancho & Josemar Rodrigues & Mario de Castro, 2011. "A flexible model for survival data with a cure rate: a Bayesian approach," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(1), pages 57-70.
  • Handle: RePEc:taf:japsta:v:38:y:2011:i:1:p:57-70
    DOI: 10.1080/02664760903254052
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/02664760903254052
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664760903254052?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amanda D’Andrea & Ricardo Rocha & Vera Tomazella & Francisco Louzada, 2018. "Negative Binomial Kumaraswamy-G Cure Rate Regression Model," JRFM, MDPI, vol. 11(1), pages 1-14, January.
    2. Francisco Louzada & M�rio de Castro & Vera Tomazella & Jhon F.B. Gonzales, 2014. "Modeling categorical covariates for lifetime data in the presence of cure fraction by Bayesian partition structures," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(3), pages 622-634, March.
    3. Vicente G. Cancho & Gladys D. C. Barriga & Gauss M. Cordeiro & Edwin M. M. Ortega & Adriano K. Suzuki, 2021. "Bayesian survival model induced by frailty for lifetime with long‐term survivors," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 75(3), pages 299-323, August.
    4. Mário Castro & Yolanda M. Gómez, 2020. "A Bayesian Cure Rate Model Based on the Power Piecewise Exponential Distribution," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 677-692, June.
    5. Reza Azimi & Mahdy Esmailian & Diego I. Gallardo & Héctor J. Gómez, 2022. "A New Cure Rate Model Based on Flory–Schulz Distribution: Application to the Cancer Data," Mathematics, MDPI, vol. 10(24), pages 1-17, December.
    6. Vicente G. Cancho & Elizbeth C. Bedia & Gauss M. Cordeiro & Fábio Prataviera & Edwin M. M. Ortega & Ana P. J. E. Santo, 2023. "A survival regression with cure fraction applied to cervical cancer," Computational Statistics, Springer, vol. 38(1), pages 403-418, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:38:y:2011:i:1:p:57-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.