IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v44y2017i16p2949-2962.html
   My bibliography  Save this article

A clustering cure rate model with application to a sealant study

Author

Listed:
  • Diego I. Gallardo
  • Heleno Bolfarine
  • Atonio Carlos Pedroso-de-Lima

Abstract

In this paper, the destructive negative binomial (DNB) cure rate model with a latent activation scheme [V. Cancho, D. Bandyopadhyay, F. Louzada, and B. Yiqi, The DNB cure rate model with a latent activation scheme, Statistical Methodology 13 (2013b), pp. 48–68] is extended to the case where the observations are grouped into clusters. Parameter estimation is performed based on the restricted maximum likelihood approach and on a Bayesian approach based on Dirichlet process priors. An application to a real data set related to a sealant study in a dentistry experiment is considered to illustrate the performance of the proposed model.

Suggested Citation

  • Diego I. Gallardo & Heleno Bolfarine & Atonio Carlos Pedroso-de-Lima, 2017. "A clustering cure rate model with application to a sealant study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(16), pages 2949-2962, December.
  • Handle: RePEc:taf:japsta:v:44:y:2017:i:16:p:2949-2962
    DOI: 10.1080/02664763.2016.1267116
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1267116
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1267116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rodrigues, Josemar & Cancho, Vicente G. & de Castro, Mrio & Louzada-Neto, Francisco, 2009. "On the unification of long-term survival models," Statistics & Probability Letters, Elsevier, vol. 79(6), pages 753-759, March.
    2. Li, Chin-Shang & Taylor, Jeremy M. G. & Sy, Judy P., 2001. "Identifiability of cure models," Statistics & Probability Letters, Elsevier, vol. 54(4), pages 389-395, October.
    3. M. C. Donohue & R. Overholser & R. Xu & F. Vaida, 2011. "Conditional Akaike information under generalized linear and proportional hazards mixed models," Biometrika, Biometrika Trust, vol. 98(3), pages 685-700.
    4. Cooner, Freda & Banerjee, Sudipto & Carlin, Bradley P. & Sinha, Debajyoti, 2007. "Flexible Cure Rate Modeling Under Latent Activation Schemes," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 560-572, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pilar A. Rivera & Diego I. Gallardo & Osvaldo Venegas & Marcelo Bourguignon & Héctor W. Gómez, 2021. "An Extension of the Truncated-Exponential Skew- Normal Distribution," Mathematics, MDPI, vol. 9(16), pages 1-11, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borges, Patrick & Rodrigues, Josemar & Balakrishnan, Narayanaswamy, 2012. "Correlated destructive generalized power series cure rate models and associated inference with an application to a cutaneous melanoma data," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1703-1713.
    2. Suvra Pal & N. Balakrishnan, 2017. "Likelihood inference for the destructive exponentially weighted Poisson cure rate model with Weibull lifetime and an application to melanoma data," Computational Statistics, Springer, vol. 32(2), pages 429-449, June.
    3. Rocha, Ricardo & Nadarajah, Saralees & Tomazella, Vera & Louzada, Francisco, 2017. "A new class of defective models based on the Marshall–Olkin family of distributions for cure rate modeling," Computational Statistics & Data Analysis, Elsevier, vol. 107(C), pages 48-63.
    4. Gallardo, Diego I. & Bolfarine, Heleno & Pedroso-de-Lima, Antonio Carlos, 2016. "Destructive weighted Poisson cure rate models with bivariate random effects: Classical and Bayesian approaches," Computational Statistics & Data Analysis, Elsevier, vol. 98(C), pages 31-45.
    5. Lu Wang & Pang Du & Hua Liang, 2012. "Two-Component Mixture Cure Rate Model with Spline Estimated Nonparametric Components," Biometrics, The International Biometric Society, vol. 68(3), pages 726-735, September.
    6. Pal, Suvra & Balakrishnan, N., 2016. "Destructive negative binomial cure rate model and EM-based likelihood inference under Weibull lifetime," Statistics & Probability Letters, Elsevier, vol. 116(C), pages 9-20.
    7. Mauro Ribeiro de Oliveira & Fernando Moreira & Francisco Louzada, 2017. "The zero-inflated promotion cure rate model applied to financial data on time-to-default," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1395950-139, January.
    8. Vicente G. Cancho & Márcia A. C. Macera & Adriano K. Suzuki & Francisco Louzada & Katherine E. C. Zavaleta, 2020. "A new long-term survival model with dispersion induced by discrete frailty," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(2), pages 221-244, April.
    9. Amanda D’Andrea & Ricardo Rocha & Vera Tomazella & Francisco Louzada, 2018. "Negative Binomial Kumaraswamy-G Cure Rate Regression Model," JRFM, MDPI, vol. 11(1), pages 1-14, January.
    10. Yolanda M. Gómez & Diego I. Gallardo & Marcelo Bourguignon & Eduardo Bertolli & Vinicius F. Calsavara, 2023. "A general class of promotion time cure rate models with a new biological interpretation," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 66-86, January.
    11. Bao Yiqi & Cibele Maria Russo & Vicente G. Cancho & Francisco Louzada, 2016. "Influence diagnostics for the Weibull-Negative-Binomial regression model with cure rate under latent failure causes," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(6), pages 1027-1060, May.
    12. Janette Larney & James Samuel Allison & Gerrit Lodewicus Grobler & Marius Smuts, 2023. "Modelling the Time to Write-Off of Non-Performing Loans Using a Promotion Time Cure Model with Parametric Frailty," Mathematics, MDPI, vol. 11(10), pages 1-17, May.
    13. Yu, Binbing & Peng, Yingwei, 2008. "Mixture cure models for multivariate survival data," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1524-1532, January.
    14. Francisco Louzada & M�rio de Castro & Vera Tomazella & Jhon F.B. Gonzales, 2014. "Modeling categorical covariates for lifetime data in the presence of cure fraction by Bayesian partition structures," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(3), pages 622-634, March.
    15. N. Balakrishnan & M. V. Koutras & F. S. Milienos & S. Pal, 2016. "Piecewise Linear Approximations for Cure Rate Models and Associated Inferential Issues," Methodology and Computing in Applied Probability, Springer, vol. 18(4), pages 937-966, December.
    16. Vicente G. Cancho & Dipak K. Dey & Francisco Louzada, 2016. "Unified multivariate survival model with a surviving fraction: an application to a Brazilian customer churn data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(3), pages 572-584, March.
    17. Hanin, Leonid & Huang, Li-Shan, 2014. "Identifiability of cure models revisited," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 261-274.
    18. Adriano Suzuki & Vicente Cancho & Francisco Louzada, 2016. "The Poisson–Inverse-Gaussian regression model with cure rate: a Bayesian approach and its case influence diagnostics," Statistical Papers, Springer, vol. 57(1), pages 133-159, March.
    19. Carvalho Lopes, Celia Mendes & Bolfarine, Heleno, 2012. "Random effects in promotion time cure rate models," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 75-87, January.
    20. Sheng Luo & Ciprian M. Crainiceanu & Thomas A. Louis & Nilanjan Chatterjee, 2009. "Bayesian Inference for Smoking Cessation with a Latent Cure State," Biometrics, The International Biometric Society, vol. 65(3), pages 970-978, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:44:y:2017:i:16:p:2949-2962. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.