IDEAS home Printed from https://ideas.repec.org/a/gam/jijfss/v11y2023i3p94-d1203368.html
   My bibliography  Save this article

Forecasting Stock Market Prices Using Machine Learning and Deep Learning Models: A Systematic Review, Performance Analysis and Discussion of Implications

Author

Listed:
  • Gaurang Sonkavde

    (Department of Artificial Intelligence and Machine Learning, Symbiosis Institute of Technology, Symbiosis International Deemed University, Pune 412115, Maharashtra, India)

  • Deepak Sudhakar Dharrao

    (Department of Computer Science & Engineering, Symbiosis Institute of Technology, Symbiosis International Deemed University, Pune 412115, Maharashtra, India)

  • Anupkumar M. Bongale

    (Department of Artificial Intelligence and Machine Learning, Symbiosis Institute of Technology, Symbiosis International Deemed University, Pune 412115, Maharashtra, India)

  • Sarika T. Deokate

    (Department of Computer Engineering, Pimpri Chinchwad College of Engineering, Pune 411044, Maharashtra, India)

  • Deepak Doreswamy

    (Department of Mechatronics, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India)

  • Subraya Krishna Bhat

    (Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India)

Abstract

The financial sector has greatly impacted the monetary well-being of consumers, traders, and financial institutions. In the current era, artificial intelligence is redefining the limits of the financial markets based on state-of-the-art machine learning and deep learning algorithms. There is extensive use of these techniques in financial instrument price prediction, market trend analysis, establishing investment opportunities, portfolio optimization, etc. Investors and traders are using machine learning and deep learning models for forecasting financial instrument movements. With the widespread adoption of AI in finance, it is imperative to summarize the recent machine learning and deep learning models, which motivated us to present this comprehensive review of the practical applications of machine learning in the financial industry. This article examines algorithms such as supervised and unsupervised machine learning algorithms, ensemble algorithms, time series analysis algorithms, and deep learning algorithms for stock price prediction and solving classification problems. The contributions of this review article are as follows: (a) it provides a description of machine learning and deep learning models used in the financial sector; (b) it provides a generic framework for stock price prediction and classification; and (c) it implements an ensemble model—“Random Forest + XG-Boost + LSTM”—for forecasting TAINIWALCHM and AGROPHOS stock prices and performs a comparative analysis with popular machine learning and deep learning models.

Suggested Citation

  • Gaurang Sonkavde & Deepak Sudhakar Dharrao & Anupkumar M. Bongale & Sarika T. Deokate & Deepak Doreswamy & Subraya Krishna Bhat, 2023. "Forecasting Stock Market Prices Using Machine Learning and Deep Learning Models: A Systematic Review, Performance Analysis and Discussion of Implications," IJFS, MDPI, vol. 11(3), pages 1-22, July.
  • Handle: RePEc:gam:jijfss:v:11:y:2023:i:3:p:94-:d:1203368
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7072/11/3/94/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7072/11/3/94/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Syed Shahan Ali & Muhammad Mubeen & Irfan Lal & Adnan Hussain, 2018. "Prediction of stock performance by using logistic regression model: evidence from Pakistan stock exchange (PSX)," Asian Journal of Empirical Research, Asian Economic and Social Society, vol. 8(7), pages 247-258, July.
    2. Jiayu Qiu & Bin Wang & Changjun Zhou, 2020. "Forecasting stock prices with long-short term memory neural network based on attention mechanism," PLOS ONE, Public Library of Science, vol. 15(1), pages 1-15, January.
    3. Jordan Mann & J. Nathan Kutz, 2015. "Dynamic Mode Decomposition for Financial Trading Strategies," Papers 1508.04487, arXiv.org.
    4. Xiao Zhong & David Enke, 2019. "Predicting the daily return direction of the stock market using hybrid machine learning algorithms," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-20, December.
    5. Syed Shahan Ali & Muhammad Mubeen & Irfan Lal & Adnan Hussain, 2018. "Prediction of Stock Performance by Using Logistic Regression Model: Evidence from Pakistan Stock Exchange (PSX)," Asian Journal of Empirical Research, Asian Economic and Social Society, vol. 8(7), pages 247-258.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhiyuan Pei & Jianqi Yan & Jin Yan & Bailing Yang & Ziyuan Li & Lin Zhang & Xin Liu & Yang Zhang, 2024. "A Stock Price Prediction Approach Based on Time Series Decomposition and Multi-Scale CNN using OHLCT Images," Papers 2410.19291, arXiv.org, revised Oct 2024.
    2. Riaz Ud Din & Salman Ahmed & Saddam Hussain Khan, 2024. "A Novel Decision Ensemble Framework: Customized Attention-BiLSTM and XGBoost for Speculative Stock Price Forecasting," Papers 2401.11621, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Federico Mecchia & Marcellino Gaudenzi, 2022. "The dynamics of the prices of the companies of the STOXX Europe 600 Index through the logit model and neural network," Papers 2206.09899, arXiv.org.
    2. Yushen Kong & Micheal Owusu-Akomeah & Henry Asante Antwi & Xuhua Hu & Patrick Acheampong, 2019. "Evaluation of the robusticity of mutual fund performance in Ghana using Enhanced Resilient Backpropagation Neural Network (ERBPNN) and Fast Adaptive Neural Network Classifier (FANNC)," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-12, December.
    3. Wang, Yuanrong & Aste, Tomaso, 2023. "Dynamic portfolio optimization with inverse covariance clustering," LSE Research Online Documents on Economics 117701, London School of Economics and Political Science, LSE Library.
    4. Akash Doshi & Alexander Issa & Puneet Sachdeva & Sina Rafati & Somnath Rakshit, 2020. "Deep Stock Predictions," Papers 2006.04992, arXiv.org.
    5. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    6. Subba Rao Polamuri & K. Srinnivas & A. Krishna Mohan, 2023. "Prediction of stock price growth for novel greedy heuristic optimized multi-instances quantitative (NGHOMQ)," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 353-366, February.
    7. Firuz Kamalov & Linda Smail & Ikhlaas Gurrib, 2021. "Stock price forecast with deep learning," Papers 2103.14081, arXiv.org.
    8. Ryan Chipwanya, 2023. "Stock Market Directional Bias Prediction Using ML Algorithms," Papers 2310.16855, arXiv.org.
    9. Li-Chen Cheng & Wei-Ting Lu & Benjamin Yeo, 2023. "Predicting abnormal trading behavior from internet rumor propagation: a machine learning approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
    10. Xie, Wen-Jie & Li, Mu-Yao & Zhou, Wei-Xing, 2021. "Learning representation of stock traders and immediate price impacts," Emerging Markets Review, Elsevier, vol. 48(C).
    11. Yinan Wang & Xiangbing Kong & Kai Guo & Chunjing Zhao & Jintao Zhao, 2023. "Intelligent Extraction of Terracing Using the ASPP ArrU-Net Deep Learning Model for Soil and Water Conservation on the Loess Plateau," Agriculture, MDPI, vol. 13(7), pages 1-23, June.
    12. Qihang Zhou & Changjun Zhou & Xiao Wang, 2022. "Stock prediction based on bidirectional gated recurrent unit with convolutional neural network and feature selection," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-20, February.
    13. Deniz Can Yıldırım & Ismail Hakkı Toroslu & Ugo Fiore, 2021. "Forecasting directional movement of Forex data using LSTM with technical and macroeconomic indicators," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-36, December.
    14. Johanna Karina Solano Meza & David Orjuela Yepes & Javier Rodrigo-Ilarri & María-Elena Rodrigo-Clavero, 2023. "Comparative Analysis of the Implementation of Support Vector Machines and Long Short-Term Memory Artificial Neural Networks in Municipal Solid Waste Management Models in Megacities," IJERPH, MDPI, vol. 20(5), pages 1-20, February.
    15. Akhilesh Prasad & Arumugam Seetharaman, 2021. "Importance of Machine Learning in Making Investment Decision in Stock Market," Vikalpa: The Journal for Decision Makers, , vol. 46(4), pages 209-222, December.
    16. Bivas Dinda, 2024. "Gated recurrent neural network with TPE Bayesian optimization for enhancing stock index prediction accuracy," Papers 2406.02604, arXiv.org.
    17. Cheng Zhang & Nilam Nur Amir Sjarif & Roslina Ibrahim, 2023. "Deep learning models for price forecasting of financial time series: A review of recent advancements: 2020-2022," Papers 2305.04811, arXiv.org, revised Sep 2023.
    18. Cui, Ling-xiao & Long, Wen, 2016. "Trading strategy based on dynamic mode decomposition: Tested in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 498-508.
    19. Sarat Chandra Nayak & Bijan Bihari Misra, 2020. "Extreme learning with chemical reaction optimization for stock volatility prediction," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-23, December.
    20. Yao, Haixiang & Xia, Shenghao & Liu, Hao, 2022. "Six-factor asset pricing and portfolio investment via deep learning: Evidence from Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 76(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijfss:v:11:y:2023:i:3:p:94-:d:1203368. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.