A Novel Decision Ensemble Framework: Customized Attention-BiLSTM and XGBoost for Speculative Stock Price Forecasting
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Dhruhi Sheth & Manan Shah, 2023. "Predicting stock market using machine learning: best and accurate way to know future stock prices," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 1-18, February.
- Jilin Zhang & Lishi Ye & Yongzeng Lai, 2023. "Stock Price Prediction Using CNN-BiLSTM-Attention Model," Mathematics, MDPI, vol. 11(9), pages 1-18, April.
- Sumit Ranjan & Parthajit Kayal & Malvika Saraf, 2023. "Bitcoin Price Prediction: A Machine Learning Sample Dimension Approach," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1617-1636, April.
- Luís Almeida & Elisabete Vieira, 2023. "Technical Analysis, Fundamental Analysis, and Ichimoku Dynamics: A Bibliometric Analysis," Risks, MDPI, vol. 11(8), pages 1-24, August.
- Gaurang Sonkavde & Deepak Sudhakar Dharrao & Anupkumar M. Bongale & Sarika T. Deokate & Deepak Doreswamy & Subraya Krishna Bhat, 2023. "Forecasting Stock Market Prices Using Machine Learning and Deep Learning Models: A Systematic Review, Performance Analysis and Discussion of Implications," IJFS, MDPI, vol. 11(3), pages 1-22, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yensen Ni, 2024. "Navigating Energy and Financial Markets: A Review of Technical Analysis Used and Further Investigation from Various Perspectives," Energies, MDPI, vol. 17(12), pages 1-22, June.
- Varshini, Anu & Kayal, Parthajit & Maiti, Moinak, 2024. "How good are different machine and deep learning models in forecasting the future price of metals? Full sample versus sub-sample," Resources Policy, Elsevier, vol. 92(C).
- Chin Soon Ku & Jiale Xiong & Yen-Lin Chen & Shing Dhee Cheah & Hoong Cheng Soong & Lip Yee Por, 2023. "Improving Stock Market Predictions: An Equity Forecasting Scanner Using Long Short-Term Memory Method with Dynamic Indicators for Malaysia Stock Market," Mathematics, MDPI, vol. 11(11), pages 1-20, May.
- Olcay Ozupek & Reyat Yilmaz & Bita Ghasemkhani & Derya Birant & Recep Alp Kut, 2024. "A Novel Hybrid Model (EMD-TI-LSTM) for Enhanced Financial Forecasting with Machine Learning," Mathematics, MDPI, vol. 12(17), pages 1-36, September.
- Purity Maina & Balázs Gyenge & Mária Fekete-Farkas & Anett Parádi-Dolgos, 2024. "Analyzing Trends in Green Financial Instrument Issuance for Climate Finance in Capital Markets," JRFM, MDPI, vol. 17(4), pages 1-25, April.
- Zihan Dong & Xinyu Fan & Zhiyuan Peng, 2024. "FNSPID: A Comprehensive Financial News Dataset in Time Series," Papers 2402.06698, arXiv.org.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2024-02-26 (Big Data)
- NEP-RMG-2024-02-26 (Risk Management)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2401.11621. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.