IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2401.11621.html
   My bibliography  Save this paper

A Novel Decision Ensemble Framework: Customized Attention-BiLSTM and XGBoost for Speculative Stock Price Forecasting

Author

Listed:
  • Riaz Ud Din
  • Salman Ahmed
  • Saddam Hussain Khan

Abstract

Forecasting speculative stock prices is essential for effective investment risk management that drives the need for the development of innovative algorithms. However, the speculative nature, volatility, and complex sequential dependencies within financial markets present inherent challenges which necessitate advanced techniques. This paper proposes a novel framework, CAB-XDE (customized attention BiLSTM-XGB decision ensemble), for predicting the daily closing price of speculative stock Bitcoin-USD (BTC-USD). CAB-XDE framework integrates a customized bi-directional long short-term memory (BiLSTM) with the attention mechanism and the XGBoost algorithm. The customized BiLSTM leverages its learning capabilities to capture the complex sequential dependencies and speculative market trends. Additionally, the new attention mechanism dynamically assigns weights to influential features, thereby enhancing interpretability, and optimizing effective cost measures and volatility forecasting. Moreover, XGBoost handles nonlinear relationships and contributes to the proposed CAB-XDE framework robustness. Additionally, the weight determination theory-error reciprocal method further refines predictions. This refinement is achieved by iteratively adjusting model weights. It is based on discrepancies between theoretical expectations and actual errors in individual customized attention BiLSTM and XGBoost models to enhance performance. Finally, the predictions from both XGBoost and customized attention BiLSTM models are concatenated to achieve diverse prediction space and are provided to the ensemble classifier to enhance the generalization capabilities of CAB-XDE. The proposed CAB-XDE framework is empirically validated on volatile Bitcoin market, sourced from Yahoo Finance and outperforms state-of-the-art models with a MAPE of 0.0037, MAE of 84.40, and RMSE of 106.14.

Suggested Citation

  • Riaz Ud Din & Salman Ahmed & Saddam Hussain Khan, 2024. "A Novel Decision Ensemble Framework: Customized Attention-BiLSTM and XGBoost for Speculative Stock Price Forecasting," Papers 2401.11621, arXiv.org.
  • Handle: RePEc:arx:papers:2401.11621
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2401.11621
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dhruhi Sheth & Manan Shah, 2023. "Predicting stock market using machine learning: best and accurate way to know future stock prices," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(1), pages 1-18, February.
    2. Jilin Zhang & Lishi Ye & Yongzeng Lai, 2023. "Stock Price Prediction Using CNN-BiLSTM-Attention Model," Mathematics, MDPI, vol. 11(9), pages 1-18, April.
    3. Sumit Ranjan & Parthajit Kayal & Malvika Saraf, 2023. "Bitcoin Price Prediction: A Machine Learning Sample Dimension Approach," Computational Economics, Springer;Society for Computational Economics, vol. 61(4), pages 1617-1636, April.
    4. Luís Almeida & Elisabete Vieira, 2023. "Technical Analysis, Fundamental Analysis, and Ichimoku Dynamics: A Bibliometric Analysis," Risks, MDPI, vol. 11(8), pages 1-24, August.
    5. Gaurang Sonkavde & Deepak Sudhakar Dharrao & Anupkumar M. Bongale & Sarika T. Deokate & Deepak Doreswamy & Subraya Krishna Bhat, 2023. "Forecasting Stock Market Prices Using Machine Learning and Deep Learning Models: A Systematic Review, Performance Analysis and Discussion of Implications," IJFS, MDPI, vol. 11(3), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yensen Ni, 2024. "Navigating Energy and Financial Markets: A Review of Technical Analysis Used and Further Investigation from Various Perspectives," Energies, MDPI, vol. 17(12), pages 1-22, June.
    2. Zhiyuan Pei & Jianqi Yan & Jin Yan & Bailing Yang & Ziyuan Li & Lin Zhang & Xin Liu & Yang Zhang, 2024. "A Stock Price Prediction Approach Based on Time Series Decomposition and Multi-Scale CNN using OHLCT Images," Papers 2410.19291, arXiv.org, revised Oct 2024.
    3. Varshini, Anu & Kayal, Parthajit & Maiti, Moinak, 2024. "How good are different machine and deep learning models in forecasting the future price of metals? Full sample versus sub-sample," Resources Policy, Elsevier, vol. 92(C).
    4. Chin Soon Ku & Jiale Xiong & Yen-Lin Chen & Shing Dhee Cheah & Hoong Cheng Soong & Lip Yee Por, 2023. "Improving Stock Market Predictions: An Equity Forecasting Scanner Using Long Short-Term Memory Method with Dynamic Indicators for Malaysia Stock Market," Mathematics, MDPI, vol. 11(11), pages 1-20, May.
    5. Olcay Ozupek & Reyat Yilmaz & Bita Ghasemkhani & Derya Birant & Recep Alp Kut, 2024. "A Novel Hybrid Model (EMD-TI-LSTM) for Enhanced Financial Forecasting with Machine Learning," Mathematics, MDPI, vol. 12(17), pages 1-36, September.
    6. Oluwadamilare Omole & David Enke, 2024. "Deep learning for Bitcoin price direction prediction: models and trading strategies empirically compared," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 10(1), pages 1-26, December.
    7. Purity Maina & Balázs Gyenge & Mária Fekete-Farkas & Anett Parádi-Dolgos, 2024. "Analyzing Trends in Green Financial Instrument Issuance for Climate Finance in Capital Markets," JRFM, MDPI, vol. 17(4), pages 1-24, April.
    8. Zihan Dong & Xinyu Fan & Zhiyuan Peng, 2024. "FNSPID: A Comprehensive Financial News Dataset in Time Series," Papers 2402.06698, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2401.11621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.