IDEAS home Printed from https://ideas.repec.org/a/asi/ajoerj/v8y2018i7p247-258id4221.html
   My bibliography  Save this article

Prediction of Stock Performance by Using Logistic Regression Model: Evidence from Pakistan Stock Exchange (PSX)

Author

Listed:
  • Syed Shahan Ali
  • Muhammad Mubeen
  • Irfan Lal
  • Adnan Hussain

Abstract

The key purpose behind the study is to use logistic regression model to predict stock performance. For this purpose different financial and accounting ratios were used as independent variables and stock performance (either “good” or “poor”) as dependent variable. The result shows that financial and accounting ratios significantly predict the stock performance. Our study consists on the sample period of annual data from 2011-2015 and comprises of 109 listed non-financial firms of Pakistan’s Stock Exchange (PSX). Our sample was shortlisted on the basis of available data of Market Capitalization. Our research examines sales growth, debt to equity ratio, book to price ratio, earning per share, return on equity and current ratio for the prediction of stock performance. The findings indicate that our prediction was 89.77 percent accurate for prediction good as well as bad performance of stock. Although we did not consider macroeconomic variable to forecast stock return performance but our six firm specific accounting and financial ratios were good enough to predict stock performance. This study shows that Logistic regression model can be used by investors, individual as well as institutions or fund managers to enhance their ability to predict “good or poor” stock.

Suggested Citation

  • Syed Shahan Ali & Muhammad Mubeen & Irfan Lal & Adnan Hussain, 2018. "Prediction of Stock Performance by Using Logistic Regression Model: Evidence from Pakistan Stock Exchange (PSX)," Asian Journal of Empirical Research, Asian Economic and Social Society, vol. 8(7), pages 247-258.
  • Handle: RePEc:asi:ajoerj:v:8:y:2018:i:7:p:247-258:id:4221
    as

    Download full text from publisher

    File URL: https://archive.aessweb.com/index.php/5004/article/view/4221/6554
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Federico Mecchia & Marcellino Gaudenzi, 2022. "The dynamics of the prices of the companies of the STOXX Europe 600 Index through the logit model and neural network," Papers 2206.09899, arXiv.org.
    2. Gaurang Sonkavde & Deepak Sudhakar Dharrao & Anupkumar M. Bongale & Sarika T. Deokate & Deepak Doreswamy & Subraya Krishna Bhat, 2023. "Forecasting Stock Market Prices Using Machine Learning and Deep Learning Models: A Systematic Review, Performance Analysis and Discussion of Implications," IJFS, MDPI, vol. 11(3), pages 1-22, July.
    3. Yushen Kong & Micheal Owusu-Akomeah & Henry Asante Antwi & Xuhua Hu & Patrick Acheampong, 2019. "Evaluation of the robusticity of mutual fund performance in Ghana using Enhanced Resilient Backpropagation Neural Network (ERBPNN) and Fast Adaptive Neural Network Classifier (FANNC)," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:asi:ajoerj:v:8:y:2018:i:7:p:247-258:id:4221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Robert Allen (email available below). General contact details of provider: https://archive.aessweb.com/index.php/5004/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.