IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1508.04487.html
   My bibliography  Save this paper

Dynamic Mode Decomposition for Financial Trading Strategies

Author

Listed:
  • Jordan Mann
  • J. Nathan Kutz

Abstract

We demonstrate the application of an algorithmic trading strategy based upon the recently developed dynamic mode decomposition (DMD) on portfolios of financial data. The method is capable of characterizing complex dynamical systems, in this case financial market dynamics, in an equation-free manner by decomposing the state of the system into low-rank terms whose temporal coefficients in time are known. By extracting key temporal coherent structures (portfolios) in its sampling window, it provides a regression to a best fit linear dynamical system, allowing for a predictive assessment of the market dynamics and informing an investment strategy. The data-driven analytics capitalizes on stock market patterns, either real or perceived, to inform buy/sell/hold investment decisions. Critical to the method is an associated learning algorithm that optimizes the sampling and prediction windows of the algorithm by discovering trading hot-spots. The underlying mathematical structure of the algorithms is rooted in methods from nonlinear dynamical systems and shows that the decomposition is an effective mathematical tool for data-driven discovery of market patterns.

Suggested Citation

  • Jordan Mann & J. Nathan Kutz, 2015. "Dynamic Mode Decomposition for Financial Trading Strategies," Papers 1508.04487, arXiv.org.
  • Handle: RePEc:arx:papers:1508.04487
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1508.04487
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Ling-xiao & Long, Wen, 2016. "Trading strategy based on dynamic mode decomposition: Tested in Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 498-508.
    2. Gaurang Sonkavde & Deepak Sudhakar Dharrao & Anupkumar M. Bongale & Sarika T. Deokate & Deepak Doreswamy & Subraya Krishna Bhat, 2023. "Forecasting Stock Market Prices Using Machine Learning and Deep Learning Models: A Systematic Review, Performance Analysis and Discussion of Implications," IJFS, MDPI, vol. 11(3), pages 1-22, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1508.04487. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.