IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i4p3083-d1063766.html
   My bibliography  Save this article

Research Progress, Hotspots, and Trends of Using BIM to Reduce Building Energy Consumption: Visual Analysis Based on WOS Database

Author

Listed:
  • Xun Liu

    (School of Civil Engineering, Suzhou University of Science and Technology, No. 1 Kerui Rd., New District, Suzhou 215000, China)

  • Zhenhan Ding

    (School of Civil Engineering, Suzhou University of Science and Technology, No. 1 Kerui Rd., New District, Suzhou 215000, China)

  • Xiaobo Li

    (School of Civil Engineering, Suzhou University of Science and Technology, No. 1 Kerui Rd., New District, Suzhou 215000, China)

  • Zhiyuan Xue

    (School of Civil Engineering, Suzhou University of Science and Technology, No. 1 Kerui Rd., New District, Suzhou 215000, China)

Abstract

With the development of engineering technology, building information modeling (BIM) has attracted more and more attention and has been studied by many experts on building energy consumption in recent years. It is necessary to analyze and forecast the application trend and prospect of BIM technology in building energy consumption. Based on 377 articles published in the WOS database, this study adopts the technique of combining scientometrics and bibliometrics to obtain relevant research hotspots and quantitative analysis results. The findings demonstrate that the building energy consumption field has made extensive use of BIM technology. However, there are still some limitations that can be improved, and the use of BIM technology in construction renovation projects should be emphasized. This study can help readers better understand the application status of BIM technology and its trajectory of development with regard to building energy consumption, providing a valuable reference for future research.

Suggested Citation

  • Xun Liu & Zhenhan Ding & Xiaobo Li & Zhiyuan Xue, 2023. "Research Progress, Hotspots, and Trends of Using BIM to Reduce Building Energy Consumption: Visual Analysis Based on WOS Database," IJERPH, MDPI, vol. 20(4), pages 1-21, February.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3083-:d:1063766
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/4/3083/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/4/3083/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Abanda, F.H. & Byers, L., 2016. "An investigation of the impact of building orientation on energy consumption in a domestic building using emerging BIM (Building Information Modelling)," Energy, Elsevier, vol. 97(C), pages 517-527.
    2. Francisco Javier Montiel-Santiago & Manuel Jesús Hermoso-Orzáez & Julio Terrados-Cepeda, 2020. "Sustainability and Energy Efficiency: BIM 6D. Study of the BIM Methodology Applied to Hospital Buildings. Value of Interior Lighting and Daylight in Energy Simulation," Sustainability, MDPI, vol. 12(14), pages 1-29, July.
    3. Zoran Pučko & Damjan Maučec & Nataša Šuman, 2020. "Energy and Cost Analysis of Building Envelope Components Using BIM: A Systematic Approach," Energies, MDPI, vol. 13(10), pages 1-24, May.
    4. Li, Y. & Kubicki, S. & Guerriero, A. & Rezgui, Y., 2019. "Review of building energy performance certification schemes towards future improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Clarke, Leon & Eom, Jiyong & Marten, Elke Hodson & Horowitz, Russell & Kyle, Page & Link, Robert & Mignone, Bryan K. & Mundra, Anupriya & Zhou, Yuyu, 2018. "Effects of long-term climate change on global building energy expenditures," Energy Economics, Elsevier, vol. 72(C), pages 667-677.
    6. Sanhudo, Luís & Ramos, Nuno M.M. & Poças Martins, João & Almeida, Ricardo M.S.F. & Barreira, Eva & Simões, M. Lurdes & Cardoso, Vítor, 2018. "Building information modeling for energy retrofitting – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 249-260.
    7. Bienvenido-Huertas, David & Moyano, Juan & Marín, David & Fresco-Contreras, Rafael, 2019. "Review of in situ methods for assessing the thermal transmittance of walls," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 356-371.
    8. Stegnar, G. & Cerovšek, T., 2019. "Information needs for progressive BIM methodology supporting the holistic energy renovation of office buildings," Energy, Elsevier, vol. 173(C), pages 317-331.
    9. Sadeghifam, Aidin Nobahar & Meynagh, Mahdi Moharrami & Tabatabaee, Sanaz & Mahdiyar, Amir & Memari, Ashkan & Ismail, Syuhaida, 2019. "Assessment of the building components in the energy efficient design of tropical residential buildings: An application of BIM and statistical Taguchi method," Energy, Elsevier, vol. 188(C).
    10. Freitas, Jader de Sousa & Cronemberger, Joára & Soares, Raí Mariano & Amorim, Cláudia Naves David, 2020. "Modeling and assessing BIPV envelopes using parametric Rhinoceros plugins Grasshopper and Ladybug," Renewable Energy, Elsevier, vol. 160(C), pages 1468-1479.
    11. Fetrati, Mahdieh A. & Hansen, David & Akhavan, Payman, 2022. "How to manage creativity in organizations: Connecting the literature on organizational creativity through bibliometric research," Technovation, Elsevier, vol. 115(C).
    12. Li, Clyde Zhengdao & Lai, Xulu & Xiao, Bing & Tam, Vivian W.Y. & Guo, Shan & Zhao, Yiyu, 2020. "A holistic review on life cycle energy of buildings: An analysis from 2009 to 2019," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    13. Francisco, Abigail & Truong, Hanh & Khosrowpour, Ardalan & Taylor, John E. & Mohammadi, Neda, 2018. "Occupant perceptions of building information model-based energy visualizations in eco-feedback systems," Applied Energy, Elsevier, vol. 221(C), pages 220-228.
    14. Mushk Bughio & Muhammad Shoaib Khan & Waqas Ahmed Mahar & Thorsten Schuetze, 2021. "Impact of Passive Energy Efficiency Measures on Cooling Energy Demand in an Architectural Campus Building in Karachi, Pakistan," Sustainability, MDPI, vol. 13(13), pages 1-35, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tatjana Vilutienė & Rasa Džiugaitė-Tumėnienė & Diana Kalibatienė & Darius Kalibatas, 2021. "How BIM Contributes to a Building’s Energy Efficiency throughout Its Whole Life Cycle: Systematic Mapping," Energies, MDPI, vol. 14(20), pages 1-27, October.
    2. Sanjin Gumbarević & Ivana Burcar Dunović & Bojan Milovanović & Mergim Gaši, 2020. "Method for Building Information Modeling Supported Project Control of Nearly Zero-Energy Building Delivery," Energies, MDPI, vol. 13(20), pages 1-21, October.
    3. Yali Chen & Dan Huang & Zhen Liu & Mohamed Osmani & Peter Demian, 2022. "Construction 4.0, Industry 4.0, and Building Information Modeling (BIM) for Sustainable Building Development within the Smart City," Sustainability, MDPI, vol. 14(16), pages 1-37, August.
    4. Jungsik Choi & Sejin Lee, 2023. "A Suggestion of the Alternatives Evaluation Method through IFC-Based Building Energy Performance Analysis," Sustainability, MDPI, vol. 15(3), pages 1-14, January.
    5. Pochwała, Sławomir & Anweiler, Stanisław & Tańczuk, Mariusz & Klementowski, Igor & Przysiężniuk, Dawid & Adrian, Łukasz & McNamara, Greg & Stevanović, Žana, 2023. "Energy source impact on the economic and environmental effects of retrofitting a heritage building with a heat pump system," Energy, Elsevier, vol. 278(PB).
    6. Karel Struhala & Milan Ostrý, 2021. "Life-Cycle Assessment of a Rural Terraced House: A Struggle with Sustainability of Building Renovations," Energies, MDPI, vol. 14(9), pages 1-18, April.
    7. Carlo Iapige De Gaetani & Andrea Macchi & Pasquale Perri, 2020. "Joint Analysis of Cost and Energy Savings for Preliminary Design Alternative Assessment," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    8. Gao, Hao & Koch, Christian & Wu, Yupeng, 2019. "Building information modelling based building energy modelling: A review," Applied Energy, Elsevier, vol. 238(C), pages 320-343.
    9. Nawal Abdunasseer Hmidah & Nuzul Azam Bin Haron & Aidi Alias Hizami & Teik Hua Law & Abubaker Basheer Abdalwhab Altohami, 2023. "Energy Consumption of Retrofitting Existing Public Buildings in Malaysia under BIM Approach: Pilot Study," Sustainability, MDPI, vol. 15(13), pages 1-29, June.
    10. Liu, Bokai & Penaka, Santhan Reddy & Lu, Weizhuo & Feng, Kailun & Rebbling, Anders & Olofsson, Thomas, 2023. "Data-driven quantitative analysis of an integrated open digital ecosystems platform for user-centric energy retrofits: A case study in northern Sweden," Technology in Society, Elsevier, vol. 75(C).
    11. Maria Conceição da Costa Silva & Alyx Diêgo Oliveira Silva & Emilia Rahnemay Kohlman Rabbani & Luciana H. Alencar & George da Mota Passos Neto & João Pedro Couto & Rodolfo Valdes-Vasquez, 2022. "Guidelines for the Implementation of BIM for Post-Occupancy Management of Social Housing in Brazil," Energies, MDPI, vol. 15(18), pages 1-20, September.
    12. Muhammad Altaf & Wesam Salah Alaloul & Muhammad Ali Musarat & Abdul Hannan Qureshi, 2023. "Life cycle cost analysis (LCCA) of construction projects: sustainability perspective," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(11), pages 12071-12118, November.
    13. Wu, Junqi & Niu, Zhibin & Li, Xiang & Huang, Lizhen & Nielsen, Per Sieverts & Liu, Xiufeng, 2023. "Understanding multi-scale spatiotemporal energy consumption data: A visual analysis approach," Energy, Elsevier, vol. 263(PD).
    14. Parupudi, Ranga Vihari & Singh, Harjit & Kolokotroni, Maria, 2020. "Low Concentrating Photovoltaics (LCPV) for buildings and their performance analyses," Applied Energy, Elsevier, vol. 279(C).
    15. Jinhui Ma & Haijing Huang & Mingxi Peng & Yihuan Zhou, 2024. "Investigating the Heterogeneity Effects of Urban Morphology on Building Energy Consumption from a Spatio-Temporal Perspective Using Old Residential Buildings on a University Campus," Land, MDPI, vol. 13(10), pages 1-24, October.
    16. Martín Pensado-Mariño & Lara Febrero-Garrido & Pablo Eguía-Oller & Enrique Granada-Álvarez, 2021. "Feasibility of Different Weather Data Sources Applied to Building Indoor Temperature Estimation Using LSTM Neural Networks," Sustainability, MDPI, vol. 13(24), pages 1-15, December.
    17. Mushk Bughio & Swati Bahale & Waqas Ahmed Mahar & Thorsten Schuetze, 2022. "Parametric Performance Analysis of the Cooling Potential of Earth-to-Air Heat Exchangers in Hot and Humid Climates," Energies, MDPI, vol. 15(19), pages 1-21, September.
    18. Hartin, Corinne & Link, Robert & Patel, Pralit & Mundra, Anupriya & Horowitz, Russell & Dorheim, Kalyn & Clarke, Leon, 2021. "Integrated modeling of human-earth system interactions: An application of GCAM-fusion," Energy Economics, Elsevier, vol. 103(C).
    19. Parupudi, Ranga Vihari & Singh, Harjit & Kolokotroni, Maria & Tavares, Jose, 2021. "Long term performance analysis of low concentrating photovoltaic (LCPV) systems for building retrofit," Applied Energy, Elsevier, vol. 300(C).
    20. Rongrong Yu & Ning Gu & Michael J. Ostwald, 2022. "Architects’ Perceptions about Sustainable Design Practice and the Support Provided for This by Digital Tools: A Study in Australia," Sustainability, MDPI, vol. 14(21), pages 1-18, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:4:p:3083-:d:1063766. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.