IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v279y2020ics0306261920313167.html
   My bibliography  Save this article

Low Concentrating Photovoltaics (LCPV) for buildings and their performance analyses

Author

Listed:
  • Parupudi, Ranga Vihari
  • Singh, Harjit
  • Kolokotroni, Maria

Abstract

Low concentrating photovoltaic technologies (LCPV) for building application offer viable solutions in improving the conversion efficiency of solar cells leading to an improved electrical output per unit cell area required when compared to conventional solar photovoltaic modules. The current study explores the feasibility of different geometrically equivalent LCPVs designed for building application through indoor experimental characterisation and analytical investigations. LCPV concentrator geometries were designed and simulated to predict optical efficiency at various truncation levels and range of angles of incidence using ray trace module in COMSOL Multiphysics version 5.3. The geometric concentration ratios of LCPVs investigated Compound Parabolic Concentrator (CPC), V-Trough and Asymmetric Compound Parabolic Concentrator (ACPC) with geometric concentration ratios of 1.46, 1.40, and 1.53 respectively. These prototypes were manufactured and their electrical conversion efficiency in conjunction with crystalline silicon (c-Si) solar photovoltaic cells were measured using OAI Trisol Class AAA solar simulator. Analytical model developed in the present study predicts the annual energy output generated and payback period for the LCPVs compared to an equivalent area of conventional flat module. Theoretical modeling results have showed that Asymmetric Compound Parabolic Concentrator (ACPC) with mono-crystalline silicon cells (m-Si) have generated highest energy output per unit area of 177 kWh/m2 as compared to the other configurations which make it economically viable for building retrofit with a predicted payback period of 9.7 years.

Suggested Citation

  • Parupudi, Ranga Vihari & Singh, Harjit & Kolokotroni, Maria, 2020. "Low Concentrating Photovoltaics (LCPV) for buildings and their performance analyses," Applied Energy, Elsevier, vol. 279(C).
  • Handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920313167
    DOI: 10.1016/j.apenergy.2020.115839
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920313167
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115839?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Akhtar, N. & Mullick, S.C., 2007. "Computation of glass-cover temperatures and top heat loss coefficient of flat-plate solar collectors with double glazing," Energy, Elsevier, vol. 32(7), pages 1067-1074.
    2. Li, Y. & Kubicki, S. & Guerriero, A. & Rezgui, Y., 2019. "Review of building energy performance certification schemes towards future improvement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Orioli, Aldo, 2020. "An accurate one-diode model suited to represent the current-voltage characteristics of crystalline and thin-film photovoltaic modules," Renewable Energy, Elsevier, vol. 145(C), pages 725-743.
    4. Lu, Wei & Wu, Yupeng & Eames, Philip, 2018. "Design and development of a Building Façade Integrated Asymmetric Compound Parabolic Photovoltaic concentrator (BFI-ACP-PV)," Applied Energy, Elsevier, vol. 220(C), pages 325-336.
    5. Hadavinia, Homan & Singh, Harjit, 2019. "Modelling and experimental analysis of low concentrating solar panels for use in building integrated and applied photovoltaic (BIPV/BAPV) systems," Renewable Energy, Elsevier, vol. 139(C), pages 815-829.
    6. Muhammad-Sukki, Firdaus & Abu-Bakar, Siti Hawa & Ramirez-Iniguez, Roberto & McMeekin, Scott G. & Stewart, Brian G. & Sarmah, Nabin & Mallick, Tapas Kumar & Munir, Abu Bakar & Mohd Yasin, Siti Hajar & , 2014. "Mirror symmetrical dielectric totally internally reflecting concentrator for building integrated photovoltaic systems," Applied Energy, Elsevier, vol. 113(C), pages 32-40.
    7. Madala, Srikanth & Boehm, Robert F., 2017. "A review of nonimaging solar concentrators for stationary and passive tracking applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 309-322.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dellicompagni, Pablo Roberto & Heim, Dariusz & Knera, Dominika & Krempski-Smejda, Michał, 2022. "A combined thermal and electrical performance evaluation of low concentration photovoltaic systems," Energy, Elsevier, vol. 254(PA).
    2. Liang, Shen & Zheng, Hongfei & Liu, Shuli & Ma, Xinglong, 2022. "Optical design and validation of a solar concentrating photovoltaic-thermal (CPV-T) module for building louvers," Energy, Elsevier, vol. 239(PC).
    3. David Redpath & Anshul Paneri & Harjit Singh & Ahmed Ghitas & Mohamed Sabry, 2022. "Design of a Building-Scale Space Solar Cooling System Using TRNSYS," Sustainability, MDPI, vol. 14(18), pages 1-17, September.
    4. Pramanik, Anurag & Singh, Harjit & Chandra, Ram & Vijay, Virendra Kumar & Suresh, S., 2022. "Amorphous carbon based nanofluids for direct radiative absorption in solar thermal concentrators – Experimental and computational study," Renewable Energy, Elsevier, vol. 183(C), pages 651-661.
    5. Xu, Shijie & Zhu, Qunzhi & Hu, Yan & Zhang, Tao, 2022. "Design and performance research of a new non-tracking low concentrating with lens for photovoltaic systems," Renewable Energy, Elsevier, vol. 192(C), pages 174-187.
    6. Xu, Shi-Jie & Wu, Shuang-Ying & Xiao, Lan & Chen, Zhi-Li, 2023. "Performance assessment of compound parabolic concentrating photovoltaic system based on optical-thermal-electrical-environmental coupling," Energy, Elsevier, vol. 284(C).
    7. Faisal Masood & Nursyarizal Bin Mohd Nor & Perumal Nallagownden & Irraivan Elamvazuthi & Rahman Saidur & Mohammad Azad Alam & Javed Akhter & Mohammad Yusuf & Mubbashar Mehmood & Mujahid Ali, 2022. "A Review of Recent Developments and Applications of Compound Parabolic Concentrator-Based Hybrid Solar Photovoltaic/Thermal Collectors," Sustainability, MDPI, vol. 14(9), pages 1-30, May.
    8. Parupudi, Ranga Vihari & Singh, Harjit & Kolokotroni, Maria & Tavares, Jose, 2021. "Long term performance analysis of low concentrating photovoltaic (LCPV) systems for building retrofit," Applied Energy, Elsevier, vol. 300(C).
    9. Hou, Yu-tian & Yu, Xiao-hui & Yang, Bin & Liu, Shuai-shuai & Qi, Yao, 2023. "Optical performance investigation on flat receiver for parabolic trough solar collector based on the MCRT method," Renewable Energy, Elsevier, vol. 202(C), pages 525-536.
    10. Shan, Feng & Fang, Guiyin & Zhao, Lei & Zhu, Yunzhi, 2024. "Optical, electrical, and thermal performance of low-concentrating photovoltaic/thermal system using microencapsulated phase change material suspension as a coolant," Renewable Energy, Elsevier, vol. 227(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Przemyslaw Zawadzki & Firdaus Muhammad-Sukki & Siti Hawa Abu-Bakar & Nurul Aini Bani & Abdullahi Abubakar Mas’ud & Jorge Alfredo Ardila-Rey & Abu Bakar Munir, 2020. "Life Cycle Assessment of a Rotationally Asymmetrical Compound Parabolic Concentrator (RACPC)," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    2. Xuan, Qingdong & Li, Guiqiang & Lu, Yashun & Zhao, Bin & Zhao, Xudong & Pei, Gang, 2019. "The design, construction and experimental characterization of a novel concentrating photovoltaic/daylighting window for green building roof," Energy, Elsevier, vol. 175(C), pages 1138-1152.
    3. Abdullah Alamoudi & Syed Muhammad Saaduddin & Abu Bakar Munir & Firdaus Muhammad-Sukki & Siti Hawa Abu-Bakar & Siti Hajar Mohd Yasin & Ridoan Karim & Nurul Aini Bani & Abdullahi Abubakar Mas’ud & Jorg, 2019. "Using Static Concentrator Technology to Achieve Global Energy Goal," Sustainability, MDPI, vol. 11(11), pages 1-22, May.
    4. Mahavar, S. & Rajawat, P. & Marwal, V.K. & Punia, R.C. & Dashora, P., 2013. "Modeling and on-field testing of a Solar Rice Cooker," Energy, Elsevier, vol. 49(C), pages 404-412.
    5. Shariq, M. Hasan & Hughes, Ben Richard, 2020. "Revolutionising building inspection techniques to meet large-scale energy demands: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    6. Javed Akhter & Syed I. Gilani & Hussain H. Al-Kayiem & Muzaffar Ali, 2019. "Optical Performance Analysis of Single Flow Through and Concentric Tube Receiver Coupled with a Modified CPC Collector Under Different Configurations," Energies, MDPI, vol. 12(21), pages 1-24, October.
    7. Farhadi, Rouhollah & Taki, Morteza, 2020. "The energy gain reduction due to shadow inside a flat-plate solar collector," Renewable Energy, Elsevier, vol. 147(P1), pages 730-740.
    8. Agrawal, Monika & Chhajed, Priyank & Chowdhury, Amartya, 2022. "Performance analysis of photovoltaic module with reflector: Optimizing orientation with different tilt scenarios," Renewable Energy, Elsevier, vol. 186(C), pages 10-25.
    9. Kumar, Manish & Malik, Prashant & Chandel, Rahul & Chandel, Shyam Singh, 2023. "Development of a novel solar PV module model for reliable power prediction under real outdoor conditions," Renewable Energy, Elsevier, vol. 217(C).
    10. Ustaoglu, Abid & Ozbey, Umut & Torlaklı, Hande, 2020. "Numerical investigation of concentrating photovoltaic/thermal (CPV/T) system using compound hyperbolic –trumpet, V-trough and compound parabolic concentrators," Renewable Energy, Elsevier, vol. 152(C), pages 1192-1208.
    11. Xuan, Qingdong & Li, Guiqiang & Yang, Honglun & Gao, Cai & Jiang, Bin & Liu, Xiangnong & Ji, Jie & Zhao, Xudong & Pei, Gang, 2021. "Performance evaluation for the dielectric asymmetric compound parabolic concentrator with almost unity angular acceptance efficiency," Energy, Elsevier, vol. 233(C).
    12. Bushra, Nayab & Hartmann, Timo, 2019. "A review of state-of-the-art reflective two-stage solar concentrators: Technology categorization and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    13. Paúl Espinoza-Zambrano & Carlos Marmolejo-Duarte & Alejandra García-Hooghuis, 2023. "Libro del Edificio Electrónico (LdE-e): Advancing towards a Comprehensive Tool for the Management and Renovation of Multifamily Buildings in Spain," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    14. Minyoung Kwon & Erwin Mlecnik & Vincent Gruis, 2021. "Business Model Development for Temporary Home Renovation Consultancy Centres: Experiences from European Pop-Ups," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
    15. Li, Guiqiang & Xuan, Qingdong & Akram, M.W. & Golizadeh Akhlaghi, Yousef & Liu, Haowen & Shittu, Samson, 2020. "Building integrated solar concentrating systems: A review," Applied Energy, Elsevier, vol. 260(C).
    16. Irini Barbero & Yacine Rezgui & Ioan Petri, 2023. "A European-wide exploratory study to analyse the relationship between training and energy efficiency in the construction sector," Environment Systems and Decisions, Springer, vol. 43(3), pages 337-357, September.
    17. Rafaela Bortolini & Raul Rodrigues & Hamidreza Alavi & Luisa Felix Dalla Vecchia & Núria Forcada, 2022. "Digital Twins’ Applications for Building Energy Efficiency: A Review," Energies, MDPI, vol. 15(19), pages 1-17, September.
    18. Xuan, Qingdong & Li, Guiqiang & Lu, Yashun & Zhao, Bin & Wang, Fuqiang & Pei, Gang, 2021. "Daylighting utilization and uniformity comparison for a concentrator-photovoltaic window in energy saving application on the building," Energy, Elsevier, vol. 214(C).
    19. Jaaz, Ahed Hameed & Hasan, Husam Abdulrasool & Sopian, Kamaruzzaman & Haji Ruslan, Mohd Hafidz Bin & Zaidi, Saleem Hussain, 2017. "Design and development of compound parabolic concentrating for photovoltaic solar collector: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1108-1121.
    20. Wiethe, Christian & Wenninger, Simon, 2023. "The influence of building energy performance prediction accuracy on retrofit rates," Energy Policy, Elsevier, vol. 177(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:279:y:2020:i:c:s0306261920313167. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.