IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v263y2023ipds0360544222028250.html
   My bibliography  Save this article

Understanding multi-scale spatiotemporal energy consumption data: A visual analysis approach

Author

Listed:
  • Wu, Junqi
  • Niu, Zhibin
  • Li, Xiang
  • Huang, Lizhen
  • Nielsen, Per Sieverts
  • Liu, Xiufeng

Abstract

Understanding energy consumption patterns is crucial for energy demand-side management. Unlike traditional data mining or machine learning-based methods, this paper presents visual analysis methods for exploring energy consumption data from spatial, temporal, and spatiotemporal dimensions, including variability, segmentation, and energy demand shifts. To support the proposed methods, we develop a visual analysis tool that allows users to explore consumption data and validate their hypotheses based on visual results through human–client–server interactions. In particular, we propose a novel potential flow-based method to model energy demand shift patterns and have integrated it into the proposed analysis tool. We comprehensively evaluate the proposed methods and the tool using real-world electricity consumption data from the Shanghai Pudong district, and compare with traditional data mining methods. The results demonstrated the effectiveness and superiority of the proposed visual analysis methods, including its ability to discover the spatiotemporal variability of energy demand, customer groups, and demand shift patterns across different geographical areas and time horizons. All results can be well explained by knowledge of the energy consumption in the study region.

Suggested Citation

  • Wu, Junqi & Niu, Zhibin & Li, Xiang & Huang, Lizhen & Nielsen, Per Sieverts & Liu, Xiufeng, 2023. "Understanding multi-scale spatiotemporal energy consumption data: A visual analysis approach," Energy, Elsevier, vol. 263(PD).
  • Handle: RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222028250
    DOI: 10.1016/j.energy.2022.125939
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222028250
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.125939?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Zhikun & Yu, Junqi & Zhao, Anjun & Hu, Qun & Yang, Siyuan, 2022. "A hybrid method of cooling load forecasting for large commercial building based on extreme learning machine," Energy, Elsevier, vol. 238(PC).
    2. Reuven Y. Rubinstein & Ruth Marcus, 1985. "Efficiency of Multivariate Control Variates in Monte Carlo Simulation," Operations Research, INFORMS, vol. 33(3), pages 661-677, June.
    3. Shailendra Singh & Abdulsalam Yassine, 2018. "Big Data Mining of Energy Time Series for Behavioral Analytics and Energy Consumption Forecasting," Energies, MDPI, vol. 11(2), pages 1-26, February.
    4. Carrie Armel, K. & Gupta, Abhay & Shrimali, Gireesh & Albert, Adrian, 2013. "Is disaggregation the holy grail of energy efficiency? The case of electricity," Energy Policy, Elsevier, vol. 52(C), pages 213-234.
    5. Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
    6. Sharma, Abhishek & Jain, Sachin Kumar, 2022. "A novel seasonal segmentation approach for day-ahead load forecasting," Energy, Elsevier, vol. 257(C).
    7. Nageler, P. & Heimrath, R. & Mach, T. & Hochenauer, C., 2019. "Prototype of a simulation framework for georeferenced large-scale dynamic simulations of district energy systems," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    8. Peng, Jieyang & Kimmig, Andreas & Niu, Zhibin & Wang, Jiahai & Liu, Xiufeng & Ovtcharova, Jivka, 2021. "A flexible potential-flow model based high resolution spatiotemporal energy demand forecasting framework," Applied Energy, Elsevier, vol. 299(C).
    9. Niu, Zhibin & Wu, Junqi & Liu, Xiufeng & Huang, Lizhen & Nielsen, Per Sieverts, 2021. "Understanding energy demand behaviors through spatio-temporal smart meter data analysis," Energy, Elsevier, vol. 226(C).
    10. Ellegård, Kajsa & Palm, Jenny, 2011. "Visualizing energy consumption activities as a tool for making everyday life more sustainable," Applied Energy, Elsevier, vol. 88(5), pages 1920-1926, May.
    11. Yazdanie, M. & Orehounig, K., 2021. "Advancing urban energy system planning and modeling approaches: Gaps and solutions in perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    12. Li, Jianbin & Chen, Zhiqiang & Cheng, Long & Liu, Xiufeng, 2022. "Energy data generation with Wasserstein Deep Convolutional Generative Adversarial Networks," Energy, Elsevier, vol. 257(C).
    13. Francisco, Abigail & Truong, Hanh & Khosrowpour, Ardalan & Taylor, John E. & Mohammadi, Neda, 2018. "Occupant perceptions of building information model-based energy visualizations in eco-feedback systems," Applied Energy, Elsevier, vol. 221(C), pages 220-228.
    14. Pamulapati, Trinadh & Mallipeddi, Rammohan & Lee, Minho, 2020. "Multi-objective home appliance scheduling with implicit and interactive user satisfaction modelling," Applied Energy, Elsevier, vol. 267(C).
    15. Fan, Cheng & Xiao, Fu & Song, Mengjie & Wang, Jiayuan, 2019. "A graph mining-based methodology for discovering and visualizing high-level knowledge for building energy management," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    16. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wen, Hanguan & Liu, Xiufeng & Yang, Ming & Lei, Bo & Cheng, Xu & Chen, Zhe, 2023. "An energy demand-side management and net metering decision framework," Energy, Elsevier, vol. 271(C).
    2. Ahir, Rajesh K. & Chakraborty, Basab, 2023. "A data-driven analytic approach for investigation of electricity demand variability for energy conservation programs," Energy, Elsevier, vol. 282(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chalal, M.L. & Medjdoub, B. & Bezai, N. & Bull, R. & Zune, M., 2022. "Visualisation in energy eco-feedback systems: A systematic review of good practice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    2. Chen, Zhiqiang & Li, Jianbin & Cheng, Long & Liu, Xiufeng, 2023. "Federated-WDCGAN: A federated smart meter data sharing framework for privacy preservation," Applied Energy, Elsevier, vol. 334(C).
    3. Sekhar, Charan & Dahiya, Ratna, 2023. "Robust framework based on hybrid deep learning approach for short term load forecasting of building electricity demand," Energy, Elsevier, vol. 268(C).
    4. Khosrowpour, Ardalan & Jain, Rishee K. & Taylor, John E. & Peschiera, Gabriel & Chen, Jiayu & Gulbinas, Rimas, 2018. "A review of occupant energy feedback research: Opportunities for methodological fusion at the intersection of experimentation, analytics, surveys and simulation," Applied Energy, Elsevier, vol. 218(C), pages 304-316.
    5. Kwok Tai Chui & Miltiadis D. Lytras & Anna Visvizi, 2018. "Energy Sustainability in Smart Cities: Artificial Intelligence, Smart Monitoring, and Optimization of Energy Consumption," Energies, MDPI, vol. 11(11), pages 1-20, October.
    6. Haixia Gu & Gaojun Liu & Jixue Li & Hongyun Xie & Hanguan Wen, 2023. "A Framework Based on Deep Learning for Predicting Multiple Safety-Critical Parameter Trends in Nuclear Power Plants," Sustainability, MDPI, vol. 15(7), pages 1-15, April.
    7. Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
    8. Troy Malatesta & Gregory M. Morrison & Jessica K. Breadsell & Christine Eon, 2023. "A Systematic Literature Review of the Interplay between Renewable Energy Systems and Occupant Practices," Sustainability, MDPI, vol. 15(12), pages 1-27, June.
    9. Peng, Jieyang & Kimmig, Andreas & Niu, Zhibin & Wang, Jiahai & Liu, Xiufeng & Ovtcharova, Jivka, 2021. "A flexible potential-flow model based high resolution spatiotemporal energy demand forecasting framework," Applied Energy, Elsevier, vol. 299(C).
    10. Frankel, Matthew & Xing, Lu & Chewning, Connor & Sela, Lina, 2021. "Water-energy benchmarking and predictive modeling in multi-family residential and non-residential buildings," Applied Energy, Elsevier, vol. 281(C).
    11. Barja-Martinez, Sara & Aragüés-Peñalba, Mònica & Munné-Collado, Íngrid & Lloret-Gallego, Pau & Bullich-Massagué, Eduard & Villafafila-Robles, Roberto, 2021. "Artificial intelligence techniques for enabling Big Data services in distribution networks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    12. Edtmayer, Hermann & Nageler, Peter & Heimrath, Richard & Mach, Thomas & Hochenauer, Christoph, 2021. "Investigation on sector coupling potentials of a 5th generation district heating and cooling network," Energy, Elsevier, vol. 230(C).
    13. Shimoda, Yoshiyuki & Yamaguchi, Yohei & Iwafune, Yumiko & Hidaka, Kazuyoshi & Meier, Alan & Yagita, Yoshie & Kawamoto, Hisaki & Nishikiori, Soichi, 2020. "Energy demand science for a decarbonized society in the context of the residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    14. Habeebur Rahman & Iniyan Selvarasan & Jahitha Begum A, 2018. "Short-Term Forecasting of Total Energy Consumption for India-A Black Box Based Approach," Energies, MDPI, vol. 11(12), pages 1-21, December.
    15. Liu, Xuewei & Yuan, Zengwei & Xu, Yuan & Jiang, Songyan, 2017. "Greening cement in China: A cost-effective roadmap," Applied Energy, Elsevier, vol. 189(C), pages 233-244.
    16. Xinghua Wang & Fucheng Zhong & Yilin Xu & Xixian Liu & Zezhong Li & Jianan Liu & Zhuoli Zhao, 2023. "Extraction and Joint Method of PV–Load Typical Scenes Considering Temporal and Spatial Distribution Characteristics," Energies, MDPI, vol. 16(18), pages 1-19, September.
    17. Chatzigeorgiou, I.M. & Andreou, G.T., 2021. "A systematic review on feedback research for residential energy behavior change through mobile and web interfaces," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    18. Hasret Sahin & A. A. Solomon & Arman Aghahosseini & Christian Breyer, 2024. "Systemwide energy return on investment in a sustainable transition towards net zero power systems," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    19. Xavier Serrano-Guerrero & Guillermo Escrivá-Escrivá & Santiago Luna-Romero & Jean-Michel Clairand, 2020. "A Time-Series Treatment Method to Obtain Electrical Consumption Patterns for Anomalies Detection Improvement in Electrical Consumption Profiles," Energies, MDPI, vol. 13(5), pages 1-23, February.
    20. Rao, Congjun & Zhang, Yue & Wen, Jianghui & Xiao, Xinping & Goh, Mark, 2023. "Energy demand forecasting in China: A support vector regression-compositional data second exponential smoothing model," Energy, Elsevier, vol. 263(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:263:y:2023:i:pd:s0360544222028250. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.