IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i9p5244-d802253.html
   My bibliography  Save this article

Spatially Varying Associations of Neighborhood Disadvantage with Alcohol and Tobacco Retail Outlet Rates

Author

Listed:
  • David C. Wheeler

    (Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA)

  • Joseph Boyle

    (Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA)

  • D. Jeremy Barsell

    (Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, VA 23298, USA)

  • Trevin Glasgow

    (Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, VA 23298, USA)

  • F. Joseph McClernon

    (Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27705, USA)

  • Jason A. Oliver

    (Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC 27705, USA
    Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
    Department of Psychiatry and Behavioral Sciences, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA)

  • Bernard F. Fuemmeler

    (Department of Health Behavior and Policy, Virginia Commonwealth University, Richmond, VA 23298, USA
    Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA)

Abstract

More than 30% of cancer related deaths are related to tobacco or alcohol use. Controlling and restricting access to these cancer-causing products, especially in communities where there is a high prevalence of other cancer risk factors, has the potential to improve population health and reduce the risk of specific cancers associated with these substances in more vulnerable population subgroups. One policy-driven method of reducing access to these cancer-causing substances is to regulate where these products are sold through the placement and density of businesses selling tobacco and alcohol. Previous work has found significant positive associations between tobacco, alcohol, and tobacco and alcohol retail outlets (TRO, ARO, TARO) and a neighborhood disadvantage index (NDI) using Bayesian shared component index modeling, where NDI associations differed across outlet types and relative risks varied by population density (e.g., rural, suburban, urban). In this paper, we used a novel Bayesian index model with spatially varying effects to explore spatial nonstationarity in NDI effects for TROs, AROs, and TAROs across census tracts in North Carolina. The results revealed substantial variation in NDI effects that varied by outlet type. However, all outlet types had strong positive effects in one coastal area. The most important variables in the NDI were percent renters, Black racial segregation, and the percentage of homes built before 1940. Overall, more disadvantaged areas experienced a greater neighborhood burden of outlets selling one or both of alcohol and tobacco.

Suggested Citation

  • David C. Wheeler & Joseph Boyle & D. Jeremy Barsell & Trevin Glasgow & F. Joseph McClernon & Jason A. Oliver & Bernard F. Fuemmeler, 2022. "Spatially Varying Associations of Neighborhood Disadvantage with Alcohol and Tobacco Retail Outlet Rates," IJERPH, MDPI, vol. 19(9), pages 1-13, April.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:9:p:5244-:d:802253
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/9/5244/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/9/5244/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nelson, D.E. & Jarman, D.W. & Rehm, J. & Greenfield, T.K. & Rey, G. & Kerr, W.C. & Miller, P. & Shield, K.D. & Ye, Y. & Naimi, T.S., 2013. "Alcohol-attributable cancer deaths and years of potential life lost in the United States," American Journal of Public Health, American Public Health Association, vol. 103(4), pages 641-648.
    2. David Wheeler & Lance Waller, 2009. "Comparing spatially varying coefficient models: a case study examining violent crime rates and their relationships to alcohol outlets and illegal drug arrests," Journal of Geographical Systems, Springer, vol. 11(1), pages 1-22, March.
    3. Berke, E.M. & Tanski, S.E. & Demidenko, E. & Alford-Teaster, J. & Shi, X. & Sargent, J.D., 2010. "Alcohol retail density and demographic predictors of health disparities: A geographic analysis," American Journal of Public Health, American Public Health Association, vol. 100(10), pages 1967-1971.
    4. David C. Wheeler & Joseph Boyle & D. Jeremy Barsell & Trevin Glasgow & F. Joseph McClernon & Jason A. Oliver & Bernard F. Fuemmeler, 2022. "Associations of Alcohol and Tobacco Retail Outlet Rates with Neighborhood Disadvantage," IJERPH, MDPI, vol. 19(3), pages 1-13, January.
    5. Gelfand A.E. & Kim H-J. & Sirmans C.F. & Banerjee S., 2003. "Spatial Modeling With Spatially Varying Coefficient Processes," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 387-396, January.
    6. David C. Wheeler & Elizabeth K. Do & Rashelle B. Hayes & Kendall Fugate-Laus & Westley L. Fallavollita & Colleen Hughes & Bernard F. Fuemmeler, 2020. "Neighborhood Disadvantage and Tobacco Retail Outlet and Vape Shop Outlet Rates," IJERPH, MDPI, vol. 17(8), pages 1-12, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David C. Wheeler & Joseph Boyle & D. Jeremy Barsell & Trevin Glasgow & F. Joseph McClernon & Jason A. Oliver & Bernard F. Fuemmeler, 2022. "Associations of Alcohol and Tobacco Retail Outlet Rates with Neighborhood Disadvantage," IJERPH, MDPI, vol. 19(3), pages 1-13, January.
    2. Löchl, Michael & Axhausen, Kay W., 2010. "Modelling hedonic residential rents for land use and transport simulation while considering spatial effects," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(2), pages 39-63.
    3. Krista Schroeder & Levent Dumenci & David B. Sarwer & Jennie G. Noll & Kevin A. Henry & Shakira F. Suglia & Christine M. Forke & David C. Wheeler, 2022. "The Intersection of Neighborhood Environment and Adverse Childhood Experiences: Methods for Creation of a Neighborhood ACEs Index," IJERPH, MDPI, vol. 19(13), pages 1-19, June.
    4. Jakob A. Dambon & Stefan S. Fahrländer & Saira Karlen & Manuel Lehner & Jaron Schlesinger & Fabio Sigrist & Anna Zimmermann, 2022. "Examining the vintage effect in hedonic pricing using spatially varying coefficients models: a case study of single-family houses in the Canton of Zurich," Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 158(1), pages 1-14, December.
    5. Maria Terres & Alan Gelfand, 2015. "Using spatial gradient analysis to clarify species distributions with application to South African protea," Journal of Geographical Systems, Springer, vol. 17(3), pages 227-247, July.
    6. Antonio Páez & Steven Farber & David Wheeler, 2011. "A Simulation-Based Study of Geographically Weighted Regression as a Method for Investigating Spatially Varying Relationships," Environment and Planning A, , vol. 43(12), pages 2992-3010, December.
    7. Susana Addo Ntim & Bria Martin & Yasmin Termeh-Zonoozi, 2022. "Review of Use Prevalence, Susceptibility, Advertisement Exposure, and Access to Electronic Nicotine Delivery Systems among Minorities and Low-Income Populations in the United States," IJERPH, MDPI, vol. 19(20), pages 1-21, October.
    8. Hui Ding & Mei Yao & Riquan Zhang, 2023. "A new estimation in functional linear concurrent model with covariate dependent and noise contamination," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 86(8), pages 965-989, November.
    9. Richard Fry & Scott Orford & Sarah Rodgers & Jennifer Morgan & David Fone, 2020. "A best practice framework to measure spatial variation in alcohol availability," Environment and Planning B, , vol. 47(3), pages 381-399, March.
    10. Hu, Guanyu, 2021. "Spatially varying sparsity in dynamic regression models," Econometrics and Statistics, Elsevier, vol. 17(C), pages 23-34.
    11. David Wheeler & Catherine Calder, 2007. "An assessment of coefficient accuracy in linear regression models with spatially varying coefficients," Journal of Geographical Systems, Springer, vol. 9(2), pages 145-166, June.
    12. Sierra Pugh & Matthew J. Heaton & Jeff Svedin & Neil Hansen, 2019. "Spatiotemporal Lagged Models for Variable Rate Irrigation in Agriculture," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(4), pages 634-650, December.
    13. E. Melinda Mahabee-Gittens & Rebecca A. Vidourek & Keith A. King & Ashley L. Merianos, 2022. "Disparities in Neighborhood Characteristics among U.S. Children with Secondhand and Thirdhand Tobacco Smoke Exposure," IJERPH, MDPI, vol. 19(7), pages 1-13, April.
    14. Lucia Paci & Alan E. Gelfand & and María Asunción Beamonte & Pilar Gargallo & Manuel Salvador, 2020. "Spatial hedonic modelling adjusted for preferential sampling," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(1), pages 169-192, January.
    15. A. Stewart Fotheringham & Taylor M. Oshan, 2016. "Geographically weighted regression and multicollinearity: dispelling the myth," Journal of Geographical Systems, Springer, vol. 18(4), pages 303-329, October.
    16. Philip A. White & Alan E. Gelfand, 2021. "Multivariate functional data modeling with time-varying clustering," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(3), pages 586-602, September.
    17. David C. Wheeler & Antonio Páez & Jamie Spinney & Lance A. Waller, 2014. "A Bayesian approach to hedonic price analysis," Papers in Regional Science, Wiley Blackwell, vol. 93(3), pages 663-683, August.
    18. Wheeler, Andrew Palmer & Steenbeek, Wouter, 2020. "Mapping the risk terrain for crime using machine learning," SocArXiv xc538, Center for Open Science.
    19. repec:rre:publsh:v:51:y:2021:i:2 is not listed on IDEAS
    20. Gavin Pereira & Lisa Wood & Sarah Foster & Fatima Haggar, 2013. "Access to Alcohol Outlets, Alcohol Consumption and Mental Health," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-6, January.
    21. Gollini, Isabella & Lu, Binbin & Charlton, Martin & Brunsdon, Christopher & Harris, Paul, 2015. "GWmodel: An R Package for Exploring Spatial Heterogeneity Using Geographically Weighted Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i17).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:9:p:5244-:d:802253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.