IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i6p3174-d766522.html
   My bibliography  Save this article

Effects of Δ9-Tetrahydrocannibinol (THC) on Obesity at Different Stages of Life: A Literature Review

Author

Listed:
  • Nathan Fearby

    (Department of Biological Sciences, University at Buffalo, Buffalo, NY 14203, USA
    Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY 14203, USA)

  • Samantha Penman

    (Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY 14203, USA)

  • Panayotis Thanos

    (Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Department of Pharmacology and Toxicology, Clinical Research Institute on Addictions, Jacobs School of Medicine and Biosciences, University at Buffalo, Buffalo, NY 14203, USA
    Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA)

Abstract

The Cannabis sativa plant has historically been used for both recreational and medical purposes. With the recent surge in recreational use of cannabis among adolescents and adults in particular, there is an increased obligation to determine the short- and long-term effects that consuming this plant may have on several aspects of the human psyche and body. The goal of this article was to examine the negative effects of obesity, and how the use of Δ9-tetrahydrocannibinol (THC) or cannabidiol (CBD) can impact rates of this global pandemic at different timepoints of life. Conflicting studies have been reported between adult and adolescents, as there are reports of THC use leading to increased weight due to elevated appetite and consumption of food, while others observed a decrease in overall body weight due to the regulation of omega-6/omega-3 endocannabinoid precursors and a decrease in energy expenditure. Studies supported a positive correlation between prenatal cannabis use and obesity rates in the children as they matured. The data did not indicate a direct connection between prenatal THC levels in cannabis and obesity rates, but that this development may occur due to prenatal THC consumption leading to low birthweight, and subsequent obesity. There are few studies using animal models that directly measure the effects that prenatal THC administration on obesity risks among offspring. Thus, this is a critical area for future studies using a developmental framework to examine potential changes in risk across development.

Suggested Citation

  • Nathan Fearby & Samantha Penman & Panayotis Thanos, 2022. "Effects of Δ9-Tetrahydrocannibinol (THC) on Obesity at Different Stages of Life: A Literature Review," IJERPH, MDPI, vol. 19(6), pages 1-28, March.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:6:p:3174-:d:766522
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/6/3174/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/6/3174/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel Jimenez-Blasco & Arnau Busquets-Garcia & Etienne Hebert-Chatelain & Roman Serrat & Carlos Vicente-Gutierrez & Christina Ioannidou & Paula Gómez-Sotres & Irene Lopez-Fabuel & Monica Resch-Beushe, 2020. "Glucose metabolism links astroglial mitochondria to cannabinoid effects," Nature, Nature, vol. 583(7817), pages 603-608, July.
    2. Martin G. Myers & David P. Olson, 2012. "Central nervous system control of metabolism," Nature, Nature, vol. 491(7424), pages 357-363, November.
    3. G. J. Morton & D. E. Cummings & D. G. Baskin & G. S. Barsh & M. W. Schwartz, 2006. "Central nervous system control of food intake and body weight," Nature, Nature, vol. 443(7109), pages 289-295, September.
    4. Marco Koch & Luis Varela & Jae Geun Kim & Jung Dae Kim & Francisco Hernández-Nuño & Stephanie E. Simonds & Carlos M. Castorena & Claudia R. Vianna & Joel K. Elmquist & Yury M. Morozov & Pasko Rakic & , 2015. "Hypothalamic POMC neurons promote cannabinoid-induced feeding," Nature, Nature, vol. 519(7541), pages 45-50, March.
    5. Nephi Stella & Paul Schweitzer & Daniele Piomelli, 1997. "A second endogenous cannabinoid that modulates long-term potentiation," Nature, Nature, vol. 388(6644), pages 773-778, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mingming Xing & Yang Li & Yuqi Zhang & Juemou Zhou & Danting Ma & Mengqi Zhang & Minglei Tang & Ting Ouyang & Fumiao Zhang & Xiaofeng Shi & Jianyuan Sun & Zuxin Chen & Weiping J. Zhang & Shuli Zhang &, 2024. "Paraventricular hypothalamic RUVBL2 neurons suppress appetite by enhancing excitatory synaptic transmission in distinct neurocircuits," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    2. Albert Stuart Reece & Gary Kenneth Hulse, 2022. "Epigenomic and Other Evidence for Cannabis-Induced Aging Contextualized in a Synthetic Epidemiologic Overview of Cannabinoid-Related Teratogenesis and Cannabinoid-Related Carcinogenesis," IJERPH, MDPI, vol. 19(24), pages 1-57, December.
    3. Weihua Ding & Liuyue Yang & Eleanor Shi & Bowon Kim & Sarah Low & Kun Hu & Lei Gao & Ping Chen & Wei Ding & David Borsook & Andrew Luo & Jee Hyun Choi & Changning Wang & Oluwaseun Akeju & Jun Yang & C, 2023. "The endocannabinoid N-arachidonoyl dopamine is critical for hyperalgesia induced by chronic sleep disruption," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Kirsten Bohmbach & Nicola Masala & Eva M. Schönhense & Katharina Hill & André N. Haubrich & Andreas Zimmer & Thoralf Opitz & Heinz Beck & Christian Henneberger, 2022. "An astrocytic signaling loop for frequency-dependent control of dendritic integration and spatial learning," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    5. Nicola Forte & Serena Boccella & Lea Tunisi & Alba Clara Fernández-Rilo & Roberta Imperatore & Fabio Arturo Iannotti & Maria Risi & Monica Iannotta & Fabiana Piscitelli & Raffaele Capasso & Paolo Giro, 2021. "Orexin-A and endocannabinoids are involved in obesity-associated alteration of hippocampal neurogenesis, plasticity, and episodic memory in mice," Nature Communications, Nature, vol. 12(1), pages 1-20, December.
    6. Hongli Li & Yuanzhong Xu & Yanyan Jiang & Zhiying Jiang & Joshua Otiz-Guzman & Jessie C. Morrill & Jing Cai & Zhengmei Mao & Yong Xu & Benjamin R. Arenkiel & Cheng Huang & Qingchun Tong, 2023. "The melanocortin action is biased toward protection from weight loss in mice," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    7. David J Marcus & Angela N Henderson-Redmond & Maciej Gonek & Michael L Zee & Jill C Farnsworth & Randa A Amin & Mary-Jeanette Andrews & Brian J Davis & Ken Mackie & Daniel J Morgan, 2017. "Mice expressing a “hyper-sensitive” form of the CB1 cannabinoid receptor (CB1) show modestly enhanced alcohol preference and consumption," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-17, April.
    8. Timothy R. Hodge & Cooper Hazel, 2022. "The munchies: Marijuana legalization and food sales in Washington," Southern Economic Journal, John Wiley & Sons, vol. 89(1), pages 112-137, July.
    9. Gregorini, Pablo & Beukes, Pierre C. & Romera, Alvaro J. & Levy, Gil & Hanigan, Mark D., 2013. "A model of diurnal grazing patterns and herbage intake of a dairy cow, MINDY: Model description," Ecological Modelling, Elsevier, vol. 270(C), pages 11-29.
    10. Yuto Hasegawa & Juhyun Kim & Gianluca Ursini & Yan Jouroukhin & Xiaolei Zhu & Yu Miyahara & Feiyi Xiong & Samskruthi Madireddy & Mizuho Obayashi & Beat Lutz & Akira Sawa & Solange P. Brown & Mikhail V, 2023. "Microglial cannabinoid receptor type 1 mediates social memory deficits in mice produced by adolescent THC exposure and 16p11.2 duplication," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    11. Laia Guardia-Escote & Jordi Blanco & Pia Basaure & Judit Biosca-Brull & Rikst Nynke Verkaik-Schakel & Maria Cabré & Fiona Peris-Sampedro & Cristian Pérez-Fernández & Fernando Sánchez-Santed & Torsten , 2020. "Sex and Exposure to Postnatal Chlorpyrifos Influence the Epigenetics of Feeding-Related Genes in a Transgenic APOE Mouse Model: Long-Term Implications on Body Weight after a High-Fat Diet," IJERPH, MDPI, vol. 18(1), pages 1-17, December.
    12. Yanine, Franco Fernando & Caballero, Federico I. & Sauma, Enzo E. & Córdova, Felisa M., 2014. "Building sustainable energy systems: Homeostatic control of grid-connected microgrids, as a means to reconcile power supply and energy demand response management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1168-1191.
    13. Raquel Francés & Yasmine Rabah & Thomas Preat & Pierre-Yves Plaçais, 2024. "Diverting glial glycolytic flux towards neurons is a memory-relevant role of Drosophila CRH-like signalling," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    14. Eugenia Murawska-Ciałowicz & Mona Wiatr & Maria Ciałowicz & Gilmara Gomes de Assis & Wojciech Borowicz & Silvia Rocha-Rodrigues & Małgorzata Paprocka-Borowicz & Adilson Marques, 2021. "BDNF Impact on Biological Markers of Depression—Role of Physical Exercise and Training," IJERPH, MDPI, vol. 18(14), pages 1-21, July.
    15. Yunpo Zhao & Mohammed A. Khallaf & Emilia Johansson & Najat Dzaki & Shreelatha Bhat & Johannes Alfredsson & Jianli Duan & Bill S. Hansson & Markus Knaden & Mattias Alenius, 2022. "Hedgehog-mediated gut-taste neuron axis controls sweet perception in Drosophila," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Paula Gómez-Sotres & Urszula Skupio & Tommaso Dalla Tor & Francisca Julio-Kalajzic & Astrid Cannich & Doriane Gisquet & Itziar Bonilla-Del Rio & Filippo Drago & Nagore Puente & Pedro Grandes & Luigi B, 2024. "Olfactory bulb astrocytes link social transmission of stress to cognitive adaptation in male mice," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    17. Ignacio Fernández-Moncada & Gianluca Lavanco & Unai B. Fundazuri & Nasrin Bollmohr & Sarah Mountadem & Tommaso Dalla Tor & Pauline Hachaguer & Francisca Julio-Kalajzic & Doriane Gisquet & Roman Serrat, 2024. "A lactate-dependent shift of glycolysis mediates synaptic and cognitive processes in male mice," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    18. Sheng Qiu & Qinan Wu & Hao Wang & Dongfang Liu & Chen Chen & Zhiming Zhu & Hongting Zheng & Gangyi Yang & Ling Li & Mengliu Yang, 2024. "AZGP1 in POMC neurons modulates energy homeostasis and metabolism through leptin-mediated STAT3 phosphorylation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    19. Masahiro Matsunaga & Takahiko Masuda & Keiko Ishii & Yohsuke Ohtsubo & Yasuki Noguchi & Misaki Ochi & Hidenori Yamasue, 2018. "Culture and cannabinoid receptor gene polymorphism interact to influence the perception of happiness," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-17, December.
    20. Albert Stuart Reece & Gary Kenneth Hulse, 2023. "Clinical Epigenomic Explanation of the Epidemiology of Cannabinoid Genotoxicity Manifesting as Transgenerational Teratogenesis, Cancerogenesis and Aging Acceleration," IJERPH, MDPI, vol. 20(4), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:6:p:3174-:d:766522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.