IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i5p2506-d755301.html
   My bibliography  Save this article

Recent Climatology (1991–2020) and Trends in Local Warm and Cold Season Extreme Temperature Days and Nights in Arabia

Author

Listed:
  • Ali S. Alghamdi

    (Department of Geography, King Saud University, Riyadh 4545, Saudi Arabia)

Abstract

The Arabian Peninsula (Arabia) is among the places to have experienced the greatest amount of warming during recent decades, and this trend is projected to continue. Specifics related to the characteristics (frequency, duration, and intensity) of extreme temperature events (ETEs) over Arabia as a whole are either largely outdated or limited only to specific areas. The seasonal ETE definitions commonly used in local studies are neither climatological- nor phenomenon-based. Using a novel and straightforward framework, the seasons of four extreme temperature types (extreme warm days/nights (EWDs/EWNs) and extreme cold days/nights (ECDs/ECNs)) were identified on the simultaneous basis of event occurrence and impact times. Assessments of ETE frequency, duration, and intensity and their recent changes were then provided based on the most recent climate data (1991–2020). Results showed that the use of traditional seasonal definitions (e.g., meteorological seasons) tends to assume a spatiotemporal homogeneity in the seasonality of ETEs and their potential risk levels throughout the year. The developed framework distinguished months with events that have larger potential impacts together with their local seasons. ETE seasons were found to vary at the regional and local scales and are better defined at both the local and phenomenon levels. Early extreme warm events were hotter, and those at locations with longer local warm seasons demonstrated higher intensities. ECDs tended to be more frequent at coastal locations, whereas ECNs were more frequent over southwestern Arabia. Early and late extreme cold events were much colder than those occurring mid-season. Trend analyses revealed generally increasing regional trends in the frequency of extreme warm events, whereas extreme cold events have declined. The duration (i.e., consecutive occurrences) and intensity of EWNs have been increasing at more locations, suggesting that urgent attention is needed within such an arid and hot climate type in which nighttime stress relief is already very limited.

Suggested Citation

  • Ali S. Alghamdi, 2022. "Recent Climatology (1991–2020) and Trends in Local Warm and Cold Season Extreme Temperature Days and Nights in Arabia," IJERPH, MDPI, vol. 19(5), pages 1-18, February.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:5:p:2506-:d:755301
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/5/2506/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/5/2506/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. John R. Nairn & Robert J. B. Fawcett, 2014. "The Excess Heat Factor: A Metric for Heatwave Intensity and Its Use in Classifying Heatwave Severity," IJERPH, MDPI, vol. 12(1), pages 1-27, December.
    2. Scott C. Sheridan & Cameron C. Lee & Michael J. Allen, 2019. "The Mortality Response to Absolute and Relative Temperature Extremes," IJERPH, MDPI, vol. 16(9), pages 1-14, April.
    3. Martin P. Tingley & Peter Huybers, 2013. "Recent temperature extremes at high northern latitudes unprecedented in the past 600 years," Nature, Nature, vol. 496(7444), pages 201-205, April.
    4. Jeremy S. Pal & Elfatih A. B. Eltahir, 2016. "Future temperature in southwest Asia projected to exceed a threshold for human adaptability," Nature Climate Change, Nature, vol. 6(2), pages 197-200, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John Nairn & Bertram Ostendorf & Peng Bi, 2018. "Performance of Excess Heat Factor Severity as a Global Heatwave Health Impact Index," IJERPH, MDPI, vol. 15(11), pages 1-26, November.
    2. Daniel Steel & Kian Mintz-Woo & C. Tyler DesRoches, 2024. "Collapse, social tipping dynamics, and framing climate change," Politics, Philosophy & Economics, , vol. 23(3), pages 230-251, August.
    3. Luke J. Harrington & Carl-Friedrich Schleussner & Friederike E. L. Otto, 2021. "Quantifying uncertainty in aggregated climate change risk assessments," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    4. Luis A. Barboza & Julien Emile-Geay & Bo Li & Wan He, 2019. "Efficient Reconstructions of Common Era Climate via Integrated Nested Laplace Approximations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 535-554, September.
    5. Marie-Noëlle WOILLEZ, 2024. "Vietnam in the face of extreme heat events," Working Paper 9b519a1c-93ab-4b16-89c2-1, Agence française de développement.
    6. Jeffrey C. Standen & Jessica Spencer & Grace W. Lee & Joe Van Buskirk & Veronica Matthews & Ivan Hanigan & Sinead Boylan & Edward Jegasothy & Matilde Breth-Petersen & Geoffrey G. Morgan, 2022. "Aboriginal Population and Climate Change in Australia: Implications for Health and Adaptation Planning," IJERPH, MDPI, vol. 19(12), pages 1-30, June.
    7. Ying Li & Cem Akkus & Xinhua Yu & Andrew Joyner & Jennifer Kmet & David Sweat & Chunrong Jia, 2019. "Heatwave Events and Mortality Outcomes in Memphis, Tennessee: Testing Effect Modification by Socioeconomic Status and Urbanicity," IJERPH, MDPI, vol. 16(22), pages 1-14, November.
    8. Dan Wanyama & Erin L. Bunting & Nicholas Weil & David Keellings, 2023. "Delineating and characterizing changes in heat wave events across the United States climate regions," Climatic Change, Springer, vol. 176(2), pages 1-23, February.
    9. Ophélie Guin & Philippe Naveau & Jean-Jacques Boreux, 2018. "Extracting a Common Signal in Tree Ring Widths with a Semi-parametric Bayesian Hierarchical Model," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 23(4), pages 550-565, December.
    10. Lisbeth Weitensfelder & Hanns Moshammer, 2019. "Evidence of Adaptation to Increasing Temperatures," IJERPH, MDPI, vol. 17(1), pages 1-9, December.
    11. Muhammad Imran Khan & Dana I. Al Huneidi & Faisal Asfand & Sami G. Al-Ghamdi, 2023. "Climate Change Implications for Optimal Sizing of Residential Rooftop Solar Photovoltaic Systems in Qatar," Sustainability, MDPI, vol. 15(24), pages 1-17, December.
    12. Samuel Lüthi & Christopher Fairless & Erich M. Fischer & Noah Scovronick & Armstrong & Micheline De Sousa Zanotti Stagliorio Coelho & Yue Leon Guo & Yuming Guo & Yasushi Honda & Veronika Huber & Jan K, 2023. "Rapid increase in the risk of heat-related mortality," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Jennifer Vanos & Gisel Guzman-Echavarria & Jane W. Baldwin & Coen Bongers & Kristie L. Ebi & Ollie Jay, 2023. "A physiological approach for assessing human survivability and liveability to heat in a changing climate," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    14. Mohsen Abbasnia, 2019. "Climatic characteristics of heat waves under climate change: a case study of mid-latitudes, Iran," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 21(2), pages 637-656, April.
    15. Muhammad Tauhidur Rahman & Adel S. Aldosary & Md. Golam Mortoja, 2017. "Modeling Future Land Cover Changes and Their Effects on the Land Surface Temperatures in the Saudi Arabian Eastern Coastal City of Dammam," Land, MDPI, vol. 6(2), pages 1-16, May.
    16. Mengmeng Li & Shaohua Gu & Peng Bi & Jun Yang & Qiyong Liu, 2015. "Heat Waves and Morbidity: Current Knowledge and Further Direction-A Comprehensive Literature Review," IJERPH, MDPI, vol. 12(5), pages 1-28, May.
    17. Scott C. Sheridan & Cameron C. Lee & Michael J. Allen, 2019. "The Mortality Response to Absolute and Relative Temperature Extremes," IJERPH, MDPI, vol. 16(9), pages 1-14, April.
    18. Francesca Cecinati & Tom Matthews & Sukumar Natarajan & Nick McCullen & David Coley, 2019. "Mining Social Media to Identify Heat Waves," IJERPH, MDPI, vol. 16(5), pages 1-19, March.
    19. Cha Zhao & François Brissette, 2022. "Impacts of large-scale oscillations on climate variability over North America," Climatic Change, Springer, vol. 173(1), pages 1-21, July.
    20. Flores-Larsen, S. & Bre, F. & Hongn, M., 2022. "A performance-based method to detect and characterize heatwaves for building resilience analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:5:p:2506-:d:755301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.