IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i13p7762-d846916.html
   My bibliography  Save this article

Study on the Influencing Factors of Farmers’ Adoption of Conservation Tillage Technology in Black Soil Region in China: A Logistic-ISM Model Approach

Author

Listed:
  • Hongpeng Guo

    (College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, China)

  • Wenkai Zhao

    (College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, China)

  • Chulin Pan

    (College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, China)

  • Guijie Qiu

    (College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, China)

  • Shuang Xu

    (College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, China)

  • Shun Liu

    (College of Biological and Agricultural Engineering, Jilin University, 5988 Renmin Street, Changchun 130022, China)

Abstract

The adoption of conservation tillage technology can improve the production efficiency of black soils (mollisols), and it has great significance to ensure the sustainable development of agriculture. This paper takes farmers in the black soil region of Jilin Province as the research object, uses 442 survey data of farmers in seven municipal areas in the black soil region of Jilin Province, constructs a logistic-ISM model, first determines the influencing factors of farmers’ adoption of conservation tillage technology, and then analyzes the hierarchical structure of each influencing factor. The results show that: (1) among the eight significant influencing factors of farmers’ adoption of conservation tillage technology, age, whether they know the government’s subsidies for conservation tillage and the number of labor force are the deep-rooted factors; (2) Education level, whether you know that the government is promoting conservation tillage, and the planting area are intermediate level factors; (3) whether they have received the technical services of conservation tillage and whether the cultivated land is scattered is the direct factors. Based on the significance analysis of the influencing factors of farmers’ adoption of conservation tillage technology and the research on the action mechanism of the influencing factors of farmers’ adoption of conservation tillage technology, this paper puts forward policy suggestions to improve the extension system of conservation tillage technology, improve the implementation of land transfer and subsidy policies, strengthen the ability of rural socialized services, and strengthen the publicity of black soils protection.

Suggested Citation

  • Hongpeng Guo & Wenkai Zhao & Chulin Pan & Guijie Qiu & Shuang Xu & Shun Liu, 2022. "Study on the Influencing Factors of Farmers’ Adoption of Conservation Tillage Technology in Black Soil Region in China: A Logistic-ISM Model Approach," IJERPH, MDPI, vol. 19(13), pages 1-16, June.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:13:p:7762-:d:846916
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/13/7762/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/13/7762/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lyubov Kurkalova & Catherine Kling & Jinhua Zhao, 2006. "Green Subsidies in Agriculture: Estimating the Adoption Costs of Conservation Tillage from Observed Behavior," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 54(2), pages 247-267, June.
    2. Zhang, Yuanxia & Halder, Pradipta & Zhang, Xiaoning & Qu, Mei, 2020. "Analyzing the deviation between farmers' Land transfer intention and behavior in China's impoverished mountainous Area: A Logistic-ISM model approach," Land Use Policy, Elsevier, vol. 94(C).
    3. Stefanos A. Nastis & Konstadinos Mattas & George Baourakis, 2019. "Understanding Farmers’ Behavior towards Sustainable Practices and Their Perceptions of Risk," Sustainability, MDPI, vol. 11(5), pages 1-13, March.
    4. Mukeshimana, Marie Claire & Zhao, Zhen-Yu & Nshimiyimana, Jean Pierre, 2021. "Evaluating strategies for renewable energy development in Rwanda: An integrated SWOT – ISM analysis," Renewable Energy, Elsevier, vol. 176(C), pages 402-414.
    5. Allen M. Featherstone & Barry K. Goodwin, 1993. "Factors Influencing a Farmer's Decision to Invest in Long-Term Conservation Improvements," Land Economics, University of Wisconsin Press, vol. 69(1), pages 67-81.
    6. Tran, Hanh & Nguyen, Quoc & Kervyn, Matthieu, 2018. "Factors influencing people’s knowledge, attitude, and practice in land use dynamics: A case study in Ca Mau province in the Mekong delta, Vietnam," Land Use Policy, Elsevier, vol. 72(C), pages 227-238.
    7. Shiwei Liu & Pingyu Zhang & Ben Marley & Wenxin Liu, 2019. "The Factors Affecting Farmers’ Soybean Planting Behavior in Heilongjiang Province, China," Agriculture, MDPI, vol. 9(9), pages 1-13, September.
    8. Bekele, Wagayehu & Drake, Lars, 2003. "Soil and water conservation decision behavior of subsistence farmers in the Eastern Highlands of Ethiopia: a case study of the Hunde-Lafto area," Ecological Economics, Elsevier, vol. 46(3), pages 437-451, October.
    9. Si, Ruishi & Lu, Qian & Aziz, Noshaba, 2021. "Does the stability of farmland rental contract & conservation tillage adoption improve family welfare? Empirical insights from Zhangye, China," Land Use Policy, Elsevier, vol. 107(C).
    10. Francis H. D'Emden & Rick S. Llewellyn & Michael P. Burton, 2008. "Factors influencing adoption of conservation tillage in Australian cropping regions ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 52(2), pages 169-182, June.
    11. Foguesatto, Cristian Rogério & Mores, Giana de Vargas & Dalmutt Kruger, Silvana & Costa, Carlos, 2020. "Will I have a potential successor? Factors influencing family farming succession in Brazil," Land Use Policy, Elsevier, vol. 97(C).
    12. Sushil,, 2018. "Incorporating polarity of relationships in ISM and TISM for theory building in information and organization management," International Journal of Information Management, Elsevier, vol. 43(C), pages 38-51.
    13. Hongpeng Guo & Fanhui Sun & Chulin Pan & Baiming Yang & Yin Li, 2021. "The Deviation of the Behaviors of Rice Farmers from Their Stated Willingness to Apply Biopesticides—A Study Carried Out in Jilin Province of China," IJERPH, MDPI, vol. 18(11), pages 1-17, June.
    14. D'Emden, Francis H. & Llewellyn, Rick S. & Burton, Michael P., 2008. "Factors influencing adoption of conservation tillage in Australian cropping regions," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 52(2), pages 1-14.
    15. Holden, Stein T. & Fisher, Monica & Katengeza, Samson P. & Thierfelder, Christian, 2018. "Can lead farmers reveal the adoption potential of conservation agriculture? The case of Malawi," Land Use Policy, Elsevier, vol. 76(C), pages 113-123.
    16. Sheikh, A. D. & Rehman, T. & Yates, C. M., 2003. "Logit models for identifying the factors that influence the uptake of new `no-tillage' technologies by farmers in the rice-wheat and the cotton-wheat farming systems of Pakistan's Punjab," Agricultural Systems, Elsevier, vol. 75(1), pages 79-95, January.
    17. Xu, Weiyi & Jin, Xiaobin & Liu, Jing & Zhou, Yinkang, 2021. "Analysis of influencing factors of cultivated land fragmentation based on hierarchical linear model: A case study of Jiangsu Province, China," Land Use Policy, Elsevier, vol. 101(C).
    18. Ward, Patrick S. & Bell, Andrew R. & Droppelmann, Klaus & Benton, Tim G., 2018. "Early adoption of conservation agriculture practices: Understanding partial compliance in programs with multiple adoption decisions," Land Use Policy, Elsevier, vol. 70(C), pages 27-37.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuxuan Xu & Hongbin Liu & Jie Lyu & Ying Xue, 2022. "What Influences Farmers’ Adoption of Soil Testing and Formulated Fertilization Technology in Black Soil Areas? An Empirical Analysis Based on Logistic-ISM Model," IJERPH, MDPI, vol. 19(23), pages 1-24, November.
    2. Guang Yang & Hua Yan & Quanfeng Li, 2023. "Coordination Analysis of Sustainable Agricultural Development in Northeast China from the Perspective of Spatiotemporal Relationships," Sustainability, MDPI, vol. 15(23), pages 1-25, November.
    3. Ruhao Xue & Bonoua Faye & Rui Zhang & Xin Gong & Guoming Du, 2024. "Farmers’ Willingness to Engage in Ecological Compensation for Crop Rotation in China’s Black Soil Regions," Agriculture, MDPI, vol. 14(8), pages 1-23, August.
    4. Jiabin Xu & Zhaoda Cui & Tianyi Wang & Jingjing Wang & Zhigang Yu & Cuixia Li, 2023. "Influence of Agricultural Technology Extension and Social Networks on Chinese Farmers’ Adoption of Conservation Tillage Technology," Land, MDPI, vol. 12(6), pages 1-23, June.
    5. Leshan Yu & Hengtong Shi & Haixia Wu & Xiangmiao Hu & Yan Ge & Leshui Yu & Wenyu Cao, 2024. "The Role of Climate Change Perceptions in Sustainable Agricultural Development: Evidence from Conservation Tillage Technology Adoption in Northern China," Land, MDPI, vol. 13(5), pages 1-25, May.
    6. Guijie Qiu & Xiaonan Xing & Guanqiao Cong & Xinyu Yang, 2022. "Measuring the Cultivated Land Use Efficiency in China: A Super Efficiency MinDS Model Approach," IJERPH, MDPI, vol. 20(1), pages 1-15, December.
    7. Guiling Zhao & Zhongji Deng & Chang Liu, 2024. "Assessment of the Coupling Degree between Agricultural Modernization and the Coordinated Development of Black Soil Protection and Utilization: A Case Study of Heilongjiang Province," Land, MDPI, vol. 13(3), pages 1-19, February.
    8. Fan Zhang & Peng Han & Ling Wu & Zhanwei Tian, 2024. "Quantitative Evaluation and Evolution Characteristics of Consistency Level of Black Soil Conservation Policy, Taking China’s Black Soil Protection Policy as an Example," Land, MDPI, vol. 13(6), pages 1-23, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marita Laukkanen & NAUGES Céline, 2009. "Environmental and production cost impacts of no-till: estimates from observed behavior," LERNA Working Papers 09.28.304, LERNA, University of Toulouse.
    2. Rui Chen & Ye Su & Lan Tran, 2024. "Small Farmer’s Perceptions of Climate Change and Adoption of Climate-Smart Practices: Evidence from Missouri, USA," Sustainability, MDPI, vol. 16(21), pages 1-19, November.
    3. Wang, Zhenhua & Liu, Qiaochu & Yang, Jian & Jiang, Jinqi, 2021. "Can Technology Demonstration Promote Rural Households’ Adoption of Conservation Tillage in the Main Grain-Producing Areas of China?," 2021 Conference, August 17-31, 2021, Virtual 315171, International Association of Agricultural Economists.
    4. Njabulo Lloyd Ntshangase & Brian Muroyiwa & Melusi Sibanda, 2018. "Farmers’ Perceptions and Factors Influencing the Adoption of No-Till Conservation Agriculture by Small-Scale Farmers in Zashuke, KwaZulu-Natal Province," Sustainability, MDPI, vol. 10(2), pages 1-16, February.
    5. Dan Qiao & Shuting Xu & Tao Xu & Qinchuan Hao & Zhen Zhong, 2022. "Gap between Willingness and Behaviors: Understanding the Consistency of Farmers’ Green Production in Hainan, China," IJERPH, MDPI, vol. 19(18), pages 1-18, September.
    6. Qingfeng Han & Kadambot H. M. Siddique & Fengmin Li, 2018. "Adoption of Conservation Tillage on the Semi-Arid Loess Plateau of Northwest China," Sustainability, MDPI, vol. 10(8), pages 1-16, July.
    7. Schipmann, Christin & Qaim, Matin, 2009. "Modern Supply Chains and Product Innovation: How Can Smallholder Farmers Benefit?," 2009 Conference, August 16-22, 2009, Beijing, China 51046, International Association of Agricultural Economists.
    8. Micheels, Eric T. & Nolan, James F., 2016. "Examining the effects of absorptive capacity and social capital on the adoption of agricultural innovations: A Canadian Prairie case study," Agricultural Systems, Elsevier, vol. 145(C), pages 127-138.
    9. Mohamed Ghali & Maha Ben Jaballah & Nejla Ben Arfa & Annie Sigwalt, 2022. "Analysis of factors that influence adoption of agroecological practices in viticulture," Review of Agricultural, Food and Environmental Studies, Springer, vol. 103(3), pages 179-209, September.
    10. Alemayehu, B. & Hagos, Fitsum & Haileslassie, A. & Mapedza, Everisto & Awulachew, Seleshi Bekele & Peden, D. & Tafesse, T., 2009. "Prospect of payments for environmental services in the Blue Nile Basin: examples from Koga and Gumera watersheds, Ethiopia," Conference Papers h042521, International Water Management Institute.
    11. Qiu, Xin & Jin, Jianjun & He, Rui & Mao, Jiansu, 2022. "The deviation between the willingness and behavior of farmers to adopt electricity-saving tricycles and its influencing factors in Dazu District of China," Energy Policy, Elsevier, vol. 167(C).
    12. Tingting Liu & Randall J. F. Bruins & Matthew T. Heberling, 2018. "Factors Influencing Farmers’ Adoption of Best Management Practices: A Review and Synthesis," Sustainability, MDPI, vol. 10(2), pages 1-26, February.
    13. Micheels, Eric T., 2015. "Pr - Factors Affecting Absorptive Capacity Among Western Canadian Grain Farms," 20th Congress, Quebec, Canada, 2015 345757, International Farm Management Association.
    14. Jacques Fils Pierre & Luis Latournerie-Moreno & René Garruña-Hernández & Krista L. Jacobsen & Carrie A. M. Laboski & Lucila de Lourdes Salazar-Barrientos & Esaú Ruiz-Sánchez, 2021. "Farmer Perceptions of Adopting Novel Legumes in Traditional Maize-Based Farming Systems in the Yucatan Peninsula," Sustainability, MDPI, vol. 13(20), pages 1-16, October.
    15. He, Xue-Feng & Cao, Huhua & Li, Feng-Min, 2007. "Econometric analysis of the determinants of adoption of rainwater harvesting and supplementary irrigation technology (RHSIT) in the semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 89(3), pages 243-250, May.
    16. Kim, Jong-Sun & Cameron, Donald, 2013. "Typology of farm management decision-making research," International Journal of Agricultural Management, Institute of Agricultural Management, vol. 2(2), pages 1-10, January.
    17. Lulu He & Qingwen Min & Chuanchun Hong & Yongxun Zhang, 2021. "Features and Socio-Economic Sustainability of Traditional Chestnut Forestry Landscape in China: A Case of Kuancheng County, Hebei Province," Land, MDPI, vol. 10(9), pages 1-18, September.
    18. Kolikow, Steven & Kragt, Marit Ellen & Mugera, Amin W., 2012. "An interdisciplinary framework of limits and barriers to climate change adaptation in agriculture," Working Papers 120467, University of Western Australia, School of Agricultural and Resource Economics.
    19. Love Offeibea Asiedu-Ayeh & Xungang Zheng & Kobina Agbodah & Bright Senyo Dogbe & Adjei Peter Darko, 2022. "Promoting the Adoption of Agricultural Green Production Technologies for Sustainable Farming: A Multi-Attribute Decision Analysis," Sustainability, MDPI, vol. 14(16), pages 1-21, August.
    20. Lisa Lobry de Bruyn & Susan Andrews, 2016. "Are Australian and United States Farmers Using Soil Information for Soil Health Management?," Sustainability, MDPI, vol. 8(4), pages 1-33, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:13:p:7762-:d:846916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.