IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i5p705-d1396676.html
   My bibliography  Save this article

The Role of Climate Change Perceptions in Sustainable Agricultural Development: Evidence from Conservation Tillage Technology Adoption in Northern China

Author

Listed:
  • Leshan Yu

    (International Business School, Shaanxi Normal University, Xi’an 710062, China)

  • Hengtong Shi

    (International Business School, Shaanxi Normal University, Xi’an 710062, China)

  • Haixia Wu

    (Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Science, Beijing 100081, China)

  • Xiangmiao Hu

    (International Business School, Shaanxi Normal University, Xi’an 710062, China)

  • Yan Ge

    (School of Public Finance and Taxation, Central University of Finance and Economics, Beijing 100081, China)

  • Leshui Yu

    (School of Geography and Tourism, Shaanxi Normal University, Xi’an 710062, China)

  • Wenyu Cao

    (School of Geography and Tourism, Shaanxi Normal University, Xi’an 710062, China)

Abstract

Encouraging the use of conservation tillage technology is a highly effective approach to safeguarding soil health, improving the environment, and promoting sustainable agricultural development. With the mounting concerns surrounding climate change, developing conservation tillage methods that facilitate sustainable agricultural growth has become an imperative both in China and around the world. While it is widely recognized that adapting to climate change is crucial in agriculture, there is limited research on evaluating the risks, discovering resilience, measuring farmers’ perceptions on climate change, and exploring how tillage technology can be adjusted in the context of small-scale farming in China to foster sustainable development. Using research data from smallholder farmers in the Shaanxi and Shanxi provinces of China, this paper aims to explore the impact of climate change perceptions on farmers’ adoption of conservation tillage technologies based on an ordered Probit model. We found that farmers tend to refrain from embracing conservation tillage technology due to the presence of unclear and conflicting perceptions regarding climate change. Focus on short-term profitability and inadequate preparation hinder them from prioritizing adaptation. We recognized several measures that could help farmers adapt and thrive within the agricultural sector. Furthermore, we have validated the need for self-system moderation in promoting farmers’ adoption of conservation tillage technology. By utilizing such tools and resources, farmers can comprehend the gravity of climate change’s impact on agricultural productivity and, more importantly, channel their efforts towards fortifying resilience to extreme weather conditions and long-term climate risks, thus fortifying agricultural sustainability.

Suggested Citation

  • Leshan Yu & Hengtong Shi & Haixia Wu & Xiangmiao Hu & Yan Ge & Leshui Yu & Wenyu Cao, 2024. "The Role of Climate Change Perceptions in Sustainable Agricultural Development: Evidence from Conservation Tillage Technology Adoption in Northern China," Land, MDPI, vol. 13(5), pages 1-25, May.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:5:p:705-:d:1396676
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/5/705/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/5/705/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shalini Lata & Patrick Nunn, 2012. "Misperceptions of climate-change risk as barriers to climate-change adaptation: a case study from the Rewa Delta, Fiji," Climatic Change, Springer, vol. 110(1), pages 169-186, January.
    2. Lyubov Kurkalova & Catherine Kling & Jinhua Zhao, 2006. "Green Subsidies in Agriculture: Estimating the Adoption Costs of Conservation Tillage from Observed Behavior," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 54(2), pages 247-267, June.
    3. Hongpeng Guo & Wenkai Zhao & Chulin Pan & Guijie Qiu & Shuang Xu & Shun Liu, 2022. "Study on the Influencing Factors of Farmers’ Adoption of Conservation Tillage Technology in Black Soil Region in China: A Logistic-ISM Model Approach," IJERPH, MDPI, vol. 19(13), pages 1-16, June.
    4. Elahi, Ehsan & Khalid, Zainab & Tauni, Muhammad Zubair & Zhang, Hongxia & Lirong, Xing, 2022. "Extreme weather events risk to crop-production and the adaptation of innovative management strategies to mitigate the risk: A retrospective survey of rural Punjab, Pakistan," Technovation, Elsevier, vol. 117(C).
    5. Norris, Patricia E. & Batie, Sandra S., 1987. "Virginia Farmers' Soil Conservation Decisions: An Application Of Tobit Analysis," Southern Journal of Agricultural Economics, Southern Agricultural Economics Association, vol. 19(1), pages 1-12, July.
    6. David Roodman, 2011. "Fitting fully observed recursive mixed-process models with cmp," Stata Journal, StataCorp LP, vol. 11(2), pages 159-206, June.
    7. Gao, Jia & Song, Ge & Sun, Xueqing, 2020. "Does labor migration affect rural land transfer? Evidence from China," Land Use Policy, Elsevier, vol. 99(C).
    8. Shilei Cui & Yajuan Li & Xiaoqiang Jiao & Dong Zhang, 2022. "Hierarchical Linkage between the Basic Characteristics of Smallholders and Technology Awareness Determines Small-Holders’ Willingness to Adopt Green Production Technology," Agriculture, MDPI, vol. 12(8), pages 1-17, August.
    9. Leshan Yu & Yan Song & Haixia Wu & Hengtong Shi, 2023. "Credit Constraint, Interlinked Insurance and Credit Contract and Farmers’ Adoption of Innovative Seeds-Field Experiment of the Loess Plateau," Land, MDPI, vol. 12(2), pages 1-28, January.
    10. Charles A. Holt & Susan K. Laury, 2005. "Risk Aversion and Incentive Effects: New Data without Order Effects," American Economic Review, American Economic Association, vol. 95(3), pages 902-912, June.
    11. Feder, Gershon & Just, Richard E & Zilberman, David, 1985. "Adoption of Agricultural Innovations in Developing Countries: A Survey," Economic Development and Cultural Change, University of Chicago Press, vol. 33(2), pages 255-298, January.
    12. Raza Ullah & Ganesh P. Shivakoti & Farhad Zulfiqar & Muhammad Nadeem Iqbal & Ashfaq Ahmad Shah, 2017. "Disaster risk management in agriculture: tragedies of the smallholders," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 87(3), pages 1361-1375, July.
    13. Norris, Patricia E. & Batie, Sandra S., 1987. "Virginia Farmers' Soil Conservation Decisions: An Application of Tobit Analysis," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 19(1), pages 79-90, July.
    14. Marco Springmann & Michael Clark & Daniel Mason-D’Croz & Keith Wiebe & Benjamin Leon Bodirsky & Luis Lassaletta & Wim Vries & Sonja J. Vermeulen & Mario Herrero & Kimberly M. Carlson & Malin Jonell & , 2018. "Options for keeping the food system within environmental limits," Nature, Nature, vol. 562(7728), pages 519-525, October.
    15. Thomas, J. & Brunette, M. & Leblois, A., 2022. "The determinants of adapting forest management practices to climate change: Lessons from a survey of French private forest owners," Forest Policy and Economics, Elsevier, vol. 135(C).
    16. Fischer, Elisabeth & Qaim, Matin, 2012. "Linking Smallholders to Markets: Determinants and Impacts of Farmer Collective Action in Kenya," World Development, Elsevier, vol. 40(6), pages 1255-1268.
    17. Zobeidi, Tahereh & Yaghoubi, Jafar & Yazdanpanah, Masoud, 2022. "Farmers’ incremental adaptation to water scarcity: An application of the model of private proactive adaptation to climate change (MPPACC)," Agricultural Water Management, Elsevier, vol. 264(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, H. Holly & Young, Douglas L. & Camara, Oumou M., 2000. "The Role Of Environmental Education In Predicting Adoption Of Wind Erosion Control Practices," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 25(2), pages 1-12, December.
    2. Dilshad Ahmad & Mohammad Afzal & Abdur Rauf, 2021. "Farmers’ adaptation decisions to landslides and flash floods in the mountainous region of Khyber Pakhtunkhwa of Pakistan," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8573-8600, June.
    3. Bekelc Shiferaw & Stein T. Holden, 1998. "Resource degradation and adoption of land conservation technologies in the Ethiopian Highlands: A case study in Andit Tid, North Shewa," Agricultural Economics, International Association of Agricultural Economists, vol. 18(3), pages 233-247, May.
    4. Nkamleu, Guy Blaise & Keho, Yaya & Gockowski, James & David, Soniia, 2007. "Investing in agrochemicals in the cocoa sector of Côte d’Ivoire: Hypotheses, evidence and policy implications," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 1(2), pages 1-22, September.
    5. Boris Bravo & Horacio Cocchi & Daniel Solís, 2006. "Adoption of Soil Conservation Technologies in El Salvador: A cross-Section and Over-Time Analysis," OVE Working Papers 1806, Inter-American Development Bank, Office of Evaluation and Oversight (OVE).
    6. Bockstael, N. & Costanza, R. & Strand, I. & Boynton, W. & Bell, K. & Wainger, L., 1995. "Ecological economic modeling and valuation of ecosystems," Ecological Economics, Elsevier, vol. 14(2), pages 143-159, August.
    7. Daberkow, Stan G. & McBride, William D., 2001. "Information And The Adoption Of Precision Farming," 2001 Annual meeting, August 5-8, Chicago, IL 20556, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    8. Thuo, Mary & Bravo-Ureta, Boris E. & Hathie, Ibrahima & Obeng-Asiedu, Patrick, 2011. "Adoption of chemical fertilizer by smallholder farmers in the peanut basin of Senegal," African Journal of Agricultural and Resource Economics, African Association of Agricultural Economists, vol. 6(1), pages 1-17, March.
    9. Solis, Daniel & Bravo-Ureta, Boris E. & Quiroga, Ricardo E., 2006. "The Effect Of Soil Conservation On Technical Efficiency: Evidence From Central America," 2006 Annual meeting, July 23-26, Long Beach, CA 21345, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Lichtenberg, Erik & Strand, Ivar E.Jr. & Lantin, Rhona M. & Lessley, Billy V., 1990. "Factors Influencing Adoption of Best Management Practices in Maryland," Working Papers 197616, University of Maryland, Department of Agricultural and Resource Economics.
    11. Diane P. Dupont, 2009. "Cost-sharing Incentive Programs for Source Water Protection: The Grand River’s Rural Water Quality Program," Working Papers 0905, Brock University, Department of Economics, revised Jun 2009.
    12. Jara-Rojas, Roberto & Bravo-Ureta, Boris E. & Díaz, José, 2012. "Adoption of water conservation practices: A socioeconomic analysis of small-scale farmers in Central Chile," Agricultural Systems, Elsevier, vol. 110(C), pages 54-62.
    13. Asafu-Adjaye, John, 2008. "Factors Affecting the Adoption of Soil Conservation Measures: A Case Study of Fijian Cane Farmers," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 33(1), pages 1-19, April.
    14. Giovanopoulou, Eirini & Nastis, Stefanos A. & Papanagiotou, Evagelos, 2011. "Modeling farmer participation in agri-environmental nitrate pollution reducing schemes," Ecological Economics, Elsevier, vol. 70(11), pages 2175-2180, September.
    15. repec:bla:canjag:v:58:y:2010:i:s1:p:481-496 is not listed on IDEAS
    16. Abdulai, Awudu & Glauben, Thomas & Herzfeld, Thomas & Zhou, Shudong, 2005. "Water Saving Technology in Chinese Rice Production - Evidence from Survey Data," 2005 International Congress, August 23-27, 2005, Copenhagen, Denmark 24708, European Association of Agricultural Economists.
    17. Lichtenberg, Erik & Strand, Ivar E. Jr. & Lessley, Billy V., 1991. "Subsidizing Agricultural Nonpoint-Source Pollution Control: Targeting Cost Sharing and Technical Assistance," Working Papers 197760, University of Maryland, Department of Agricultural and Resource Economics.
    18. Yigezu, Yigezu A. & Tizale, Chilot Y. & Aw-Hassan, Aden, 2015. "Modeling Farmers’ Adoption Decisions of Multiple Crop Technologies: The Case of Barley and Potatoes in Ethiopia," 2015 Conference, August 9-14, 2015, Milan, Italy 211867, International Association of Agricultural Economists.
    19. Kirui, Oliver & Mrzabaev, Alisher, 2015. "Costs of landj degradation in Eastern Africa," 2015 Conference, August 9-14, 2015, Milan, Italy 212007, International Association of Agricultural Economists.
    20. Balana, Bedru & Oyeyemi, Motunrayo, 2021. "Credit Constraints and Adoption of Agricultural Technologies in Developing Countries? Evidence from Nigeria," 2021 Conference, August 17-31, 2021, Virtual 315347, International Association of Agricultural Economists.
    21. Magali Aubert & Jean Marie Codron & Sylvain Rousset & Murat Yercan, 2017. "Which factors lead tomato growers to implement integrated pest management? Evidence from Turkey," Post-Print hal-02735805, HAL.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:5:p:705-:d:1396676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.