IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i11p6793-d830124.html
   My bibliography  Save this article

Exploring the Regional Coordination Relationship between Water Utilization and Urbanization Based on Decoupling Analysis: A Case Study of the Beijing–Tianjin–Hebei Region

Author

Listed:
  • Ruihua Shen

    (College of Geography and Environment, Shandong Normal University, Jinan 250014, China)

  • Lei Yao

    (College of Geography and Environment, Shandong Normal University, Jinan 250014, China)

Abstract

Understanding the potential association between the urbanization process and regional water shortage/pollution is conducive to promoting the intensive utilization of local water resources. In this study, the water footprint model was used to estimate water utilization status in terms of both water quantity (virtual water footprint (VWF)) and water quality (grey water footprint (GWF)) in the Beijing–Tianjin–Hebei region (China) during 2004–2017. Their potential coordination relationship with the local urbanization process represented by the gross domestic product (GDP), population (POP), and built-up area (BA) was examined using the Tapio decoupling model. The results showed that from 2004 to 2017, (1) VWF in Beijing and Tianjin showed non-significant decreasing trends, with reductions of 1.08 × 10 9 and 1.56 × 10 9 m 3 , respectively, while that in Hebei showed a significant increasing trend, with an increase of 5.74 × 10 9 m 3 . This indicated a gradually increasing water demand in Hebei and decreasing demand in Beijing and Tianjin. In all three regions, the agricultural sector accounted for a relatively high proportion of VWF compared to other sectors. (2) GWF in Beijing, Tianjin, and Hebei all showed declining trends, with reductions of 2.19 × 10 10 , 2.32 × 10 10 , and 1.66 × 10 11 m 3 , respectively, indicating considerable local water quality improvement. The domestic sector contributed as the main component of GWF in Beijing, while agriculture was the main contributor in Hebei. The major contributor in Tianjin transitioned from the domestic (before 2015) to the agricultural sector. (3) We found good coordination between VWF and GDP in all three regions, as their local economic development was no longer overly dependent on water consumption. However, the expansion of urban built-up area or population would bring about accelerated depletion of water resources. (4) GWF in the three provinces showed good coordination with GDP, POP, and BA in most years, implying that the development of urbanization no longer strongly caused the pollution of water resources. In sum, policymakers should focus on improving agricultural irrigation efficiency and residents’ awareness of water conservation, so as to gradually achieve sustainable water resource management in the BTH region.

Suggested Citation

  • Ruihua Shen & Lei Yao, 2022. "Exploring the Regional Coordination Relationship between Water Utilization and Urbanization Based on Decoupling Analysis: A Case Study of the Beijing–Tianjin–Hebei Region," IJERPH, MDPI, vol. 19(11), pages 1-19, June.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:11:p:6793-:d:830124
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/11/6793/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/11/6793/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gallo Corredor, José Antonio & Lizeth Vargas González, Ginary & Velasco Granados, Marcela & Gutiérrez, Luis & Pérez, Edier Humberto, 2021. "Use of the gray water footprint as an indicator of contamination caused by artisanal mining in Colombia," Resources Policy, Elsevier, vol. 73(C).
    2. Zhang, Chao & Anadon, Laura Diaz, 2014. "A multi-regional input–output analysis of domestic virtual water trade and provincial water footprint in China," Ecological Economics, Elsevier, vol. 100(C), pages 159-172.
    3. Nayan, Nakul kumar & Das, Arup & Mukerji, Arjun & Mazumder, Taraknath & Bera, Subhas, 2020. "Spatio-temporal dynamics of water resources of Hyderabad Metropolitan Area and its relationship with urbanization," Land Use Policy, Elsevier, vol. 99(C).
    4. Ma, Weijing & Meng, Lihong & Wei, Feili & Opp, Christian & Yang, Dewei, 2021. "Spatiotemporal variations of agricultural water footprint and socioeconomic matching evaluation from the perspective of ecological function zone," Agricultural Water Management, Elsevier, vol. 249(C).
    5. Wang, P.P. & Li, Y.P. & Huang, G.H. & Wang, S.G., 2022. "A multivariate statistical input–output model for analyzing water-carbon nexus system from multiple perspectives - Jing-Jin-Ji region," Applied Energy, Elsevier, vol. 310(C).
    6. Changfeng Shi & Hang Yuan & Qinghua Pang & Yangyang Zhang, 2020. "Research on the Decoupling of Water Resources Utilization and Agricultural Economic Development in Gansu Province from the Perspective of Water Footprint," IJERPH, MDPI, vol. 17(16), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ziheng Feng & Liying Sun, 2024. "Water Conservation Implications Based on Tempo-Spatial Characteristics of Water Footprint in the Water-Receiving Areas of the South-to-North Water Diversion Project, China," Sustainability, MDPI, vol. 16(3), pages 1-18, February.
    2. Safiyeh Tayebi & Bakhtiar Feizizadeh & Saeed Esfandi & Banafsheh Aliabbasi & Seyed Ali Alavi & Aliakbar Shamsipour, 2022. "A Neighborhood-Based Urban Water Carrying Capacity Assessment: Analysis of the Relationship between Spatial-Demographic Factors and Water Consumption Patterns in Tehran, Iran," Land, MDPI, vol. 11(12), pages 1-26, December.
    3. Qing Wang & Yuhang Xiao, 2022. "Has Urban Construction Land Achieved Low-Carbon Sustainable Development? A Case Study of North China Plain, China," Sustainability, MDPI, vol. 14(15), pages 1-29, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ehsan Qasemipour & Farhad Tarahomi & Markus Pahlow & Seyed Saeed Malek Sadati & Ali Abbasi, 2020. "Assessment of Virtual Water Flows in Iran Using a Multi-Regional Input-Output Analysis," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    2. Guangyao Deng & Liujuan Wang & Yanan Song, 2015. "Effect of Variation of Water-Use Efficiency on Structure of Virtual Water Trade - Analysis Based on Input–Output Model," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(8), pages 2947-2965, June.
    3. Yang, Honghua & Ma, Linwei & Li, Zheng, 2023. "Tracing China's steel use from steel flows in the production system to steel footprints in the consumption system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
    4. Yuping Deng & Yanrui Wu & Helian Xu, 2022. "Emission Reduction and Value-added Export Nexus at Firm Level," Economics Discussion / Working Papers 22-19, The University of Western Australia, Department of Economics.
    5. Sun, Xudong & Li, Jiashuo & Qiao, Han & Zhang, Bo, 2017. "Energy implications of China's regional development: New insights from multi-regional input-output analysis," Applied Energy, Elsevier, vol. 196(C), pages 118-131.
    6. Qi Liu & Aidi Huo & Yanran Liu & Ping Zhang & Zhixin Zhao & Xuantao Zhao, 2024. "Evolution Analysis of the Ecological Footprint and the Ecological Carrying Capacity of Water Resources at Different Spatial and Temporal Scales: A Case Study of Gansu Province," Sustainability, MDPI, vol. 16(24), pages 1-15, December.
    7. Yijing Chu & Yingying Wang & Zucheng Zhang & Shengli Dai, 2022. "Decoupling of Economic Growth and Industrial Water Use in Hubei Province: From an Ecological–Economic Interaction Perspective," Sustainability, MDPI, vol. 14(20), pages 1-15, October.
    8. Yanbin Li & Yuhang Han & Hongxing Li & Kai Feng, 2024. "Understanding Agricultural Water Consumption Trends in Henan Province: A Spatio-Temporal and Determinant Analysis Using Geospatial Models," Agriculture, MDPI, vol. 14(12), pages 1-20, December.
    9. Wang, Xin & Yang, Jianxun & Zhou, Qi & Liu, Miaomiao & Bi, Jun, 2022. "Mapping the exchange between embodied economic benefits and CO2 emissions among Belt and Road Initiative countries," Applied Energy, Elsevier, vol. 307(C).
    10. Xueting Zhao & Randall W. Jackson, 2016. "China’s Inter-Regional Trade of Virtual Water — A Multi-Regional Input–Output Table Based Analysis," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(02), pages 1-28, June.
    11. Liu, Zhu & Feng, Kuishuang & Hubacek, Klaus & Liang, Sai & Anadon, Laura Diaz & Zhang, Chao & Guan, Dabo, 2015. "Four system boundaries for carbon accounts," Ecological Modelling, Elsevier, vol. 318(C), pages 118-125.
    12. Wu Xie & Shuai Hu & Fangyi Li & Xin Cao & Zhipeng Tang, 2020. "Carbon and Water Footprints of Tibet: Spatial Pattern and Trend Analysis," Sustainability, MDPI, vol. 12(8), pages 1-15, April.
    13. Huang, Rui & Chen, Guangwu & Lv, Guonian & Malik, Arunima & Shi, Xunpeng & Xie, Xiaotian, 2020. "The effect of technology spillover on CO2 emissions embodied in China-Australia trade," Energy Policy, Elsevier, vol. 144(C).
    14. Hong, Jingke & Gu, Jianping & Liang, Xin & Liu, Guiwen & Shen, Geoffrey Qiping & Tang, Miaohan, 2019. "Spatiotemporal investigation of energy network patterns of agglomeration economies in China: Province-level evidence," Energy, Elsevier, vol. 187(C).
    15. Hao, Yan & Zhang, Menghui & Zhang, Yan & Fu, Chenling & Lu, Zhongming, 2018. "Multi-scale analysis of the energy metabolic processes in the Beijing–Tianjin–Hebei (Jing-Jin-Ji) urban agglomeration," Ecological Modelling, Elsevier, vol. 369(C), pages 66-76.
    16. Gu, Alun & Teng, Fei & Lv, Zhiqiang, 2016. "Exploring the nexus between water saving and energy conservation: Insights from industry sector during the 12th Five-Year Plan period in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 28-38.
    17. Sun, J.X. & Yin, Y.L. & Sun, S.K. & Wang, Y.B. & Yu, X. & Yan, K., 2021. "Review on research status of virtual water: The perspective of accounting methods, impact assessment and limitations," Agricultural Water Management, Elsevier, vol. 243(C).
    18. Yin, Jieling & Wu, Nan & Engel, Bernie A. & Hua, En & Zhang, Fuyao & Li, Xin & Wang, Yubao, 2022. "Multi-dimensional evaluation of water footprint and implication for crop production: A case study in Hetao Irrigation District, China," Agricultural Water Management, Elsevier, vol. 267(C).
    19. Hongwei Huang & Shan Jiang & Xuerui Gao & Yong Zhao & Lixing Lin & Jichao Wang & Xinxueqi Han, 2022. "The Temporal Evolution of Physical Water Consumption and Virtual Water Flow in Beijing, China," Sustainability, MDPI, vol. 14(15), pages 1-15, August.
    20. Lu, Shibao & Lu, Wenjing & Xu, Meng & Taghizadeh-Hesary, Farhad & Tang, Yao, 2023. "Water-energy-food security under green finance constraints in Southwest China," Energy Economics, Elsevier, vol. 118(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:11:p:6793-:d:830124. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.