IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v249y2021ics0378377421000688.html
   My bibliography  Save this article

Spatiotemporal variations of agricultural water footprint and socioeconomic matching evaluation from the perspective of ecological function zone

Author

Listed:
  • Ma, Weijing
  • Meng, Lihong
  • Wei, Feili
  • Opp, Christian
  • Yang, Dewei

Abstract

The water footprint theory has provided an effective approach for evaluating the utilization of freshwater resources in agricultural production. However, there are few studies have explored the dynamic coupling relationship between water footprint and socioeconomic factors, especially from the perspective of regional ecological features. Therefore, the water footprint method was used to investigate the dynamic evolution of agricultural water consumption from 2005 to 2015 in Zhangjiakou, an extremely water-scarce city which is divided into six ecological zones (I, II, III, IV, V, and VI). Then mathematical models such as the Gini coefficient were first employed to evaluate the spatiotemporal matching characteristics of agricultural water footprint and socioeconomic factors. The results show that: (1) The agricultural water footprint increased by 1.69 × 109 m3 in Zhangjiakou, of which the animal products water footprint increased by 1.59 × 109 m3, accounting for 94%. (2) Cereals had always been the major contributors to crop water footprint, with an increasing contribution rate from 49% to 54%. Milk and egg products were the main drivers for the increasing water footprint of animal products, with a total contribution rate increased from 46% to 55%. Meanwhile, the spatial differentiation was significant. The contribution rate of the cereal water footprint was less than 50% in counties of high-altitude ecological zones I, II and IV in 2015, while it was higher than 50% in counties of low-altitude ecological zones III, V and VI. (3) The per unit area water footprint in counties of the ecological zone III was much higher than the average level, while per capita water footprint and per unit output value water footprint were far below it, indicating agricultural structure optimization requires a comprehensive consideration of multiple socioeconomic factors. This study is expected to provide policy-makers with scientific guidance that is conducive to agricultural water conservation and ecological zone planning.

Suggested Citation

  • Ma, Weijing & Meng, Lihong & Wei, Feili & Opp, Christian & Yang, Dewei, 2021. "Spatiotemporal variations of agricultural water footprint and socioeconomic matching evaluation from the perspective of ecological function zone," Agricultural Water Management, Elsevier, vol. 249(C).
  • Handle: RePEc:eee:agiwat:v:249:y:2021:i:c:s0378377421000688
    DOI: 10.1016/j.agwat.2021.106803
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377421000688
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2021.106803?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vanham, D., 2016. "Does the water footprint concept provide relevant information to address the water–food–energy–ecosystem nexus?," Ecosystem Services, Elsevier, vol. 17(C), pages 298-307.
    2. Fernández, J.E. & Alcon, F. & Diaz-Espejo, A. & Hernandez-Santana, V. & Cuevas, M.V., 2020. "Water use indicators and economic analysis for on-farm irrigation decision: A case study of a super high density olive tree orchard," Agricultural Water Management, Elsevier, vol. 237(C).
    3. Bazrafshan, Ommolbanin & Ramezani Etedali, Hadi & Gerkani Nezhad Moshizi, Zahra & Shamili, Mansoureh, 2019. "Virtual water trade and water footprint accounting of Saffron production in Iran," Agricultural Water Management, Elsevier, vol. 213(C), pages 368-374.
    4. Huang, Jing & Ridoutt, Bradley G. & Thorp, Kelly R. & Wang, Xuechun & Lan, Kang & Liao, Jun & Tao, Xu & Wu, Caiyan & Huang, Jianliang & Chen, Fu & Scherer, Laura, 2019. "Water-scarcity footprints and water productivities indicate unsustainable wheat production in China," Agricultural Water Management, Elsevier, vol. 224(C), pages 1-1.
    5. Chapagain, A.K. & Hoekstra, A.Y., 2011. "The blue, green and grey water footprint of rice from production and consumption perspectives," Ecological Economics, Elsevier, vol. 70(4), pages 749-758, February.
    6. Chapagain, A.K. & Hoekstra, A.Y. & Savenije, H.H.G. & Gautam, R., 2006. "The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries," Ecological Economics, Elsevier, vol. 60(1), pages 186-203, November.
    7. Langarudi, Saeed P. & Maxwell, Connie M. & Bai, Yining & Hanson, Austin & Fernald, Alexander, 2019. "Does Socioeconomic Feedback Matter for Water Models?," Ecological Economics, Elsevier, vol. 159(C), pages 35-45.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuyang Shan & Yan Sun & Wanghai Tao & Lijun Su, 2023. "Effects of Oxygenated Brackish Water on Pakchoi ( Brassica chinensis L.) Growth Characteristics Based on a Logistic Crop Growth Model," Agriculture, MDPI, vol. 13(7), pages 1-17, July.
    2. Ruihua Shen & Lei Yao, 2022. "Exploring the Regional Coordination Relationship between Water Utilization and Urbanization Based on Decoupling Analysis: A Case Study of the Beijing–Tianjin–Hebei Region," IJERPH, MDPI, vol. 19(11), pages 1-19, June.
    3. Junyu Ding & Yongping Bai & Xuedi Yang & Zuqiao Gao, 2022. "Spatiotemporal Evolution of Water Resource Utilization and Economic Development in the Arid Region of China: A “Matching-Constraint” Perspective," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    4. Yin, Jieling & Wu, Nan & Engel, Bernie A. & Hua, En & Zhang, Fuyao & Li, Xin & Wang, Yubao, 2022. "Multi-dimensional evaluation of water footprint and implication for crop production: A case study in Hetao Irrigation District, China," Agricultural Water Management, Elsevier, vol. 267(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Changfeng Shi & Hang Yuan & Qinghua Pang & Yangyang Zhang, 2020. "Research on the Decoupling of Water Resources Utilization and Agricultural Economic Development in Gansu Province from the Perspective of Water Footprint," IJERPH, MDPI, vol. 17(16), pages 1-16, August.
    2. Razmavaran, Mohammad Hadi & Sepaskhah, Ali Reza & Ahmadi, Seyed Hamid, 2024. "Water footprint and production of rain-fed saffron under different planting methods with ridge plastic mulch and pre-flowering irrigation in a semi-arid region," Agricultural Water Management, Elsevier, vol. 291(C).
    3. María Jesús Beltrán & Esther Velázquez, 2011. "Del metabolismo social al metabolismo hídrico," Documentos de Trabajo de la Asociación de Economía Ecológica en España 01_2011, Asociación de Economía Ecológica en España.
    4. Okadera, Tomohiro & Geng, Yong & Fujita, Tsuyoshi & Dong, Huijuan & Liu, Zhu & Yoshida, Noboru & Kanazawa, Takaaki, 2015. "Evaluating the water footprint of the energy supply of Liaoning Province, China: A regional input–output analysis approach," Energy Policy, Elsevier, vol. 78(C), pages 148-157.
    5. Tomaz, Alexandra & Palma, José Ferro & Ramos, Tiago & Costa, Maria Natividade & Rosa, Elizabete & Santos, Marta & Boteta, Luís & Dôres, José & Patanita, Manuel, 2021. "Yield, technological quality and water footprints of wheat under Mediterranean climate conditions: A field experiment to evaluate the effects of irrigation and nitrogen fertilization strategies," Agricultural Water Management, Elsevier, vol. 258(C).
    6. Yu Zhang & Qing Tian & Huan Hu & Miao Yu, 2019. "Water Footprint of Food Consumption by Chinese Residents," IJERPH, MDPI, vol. 16(20), pages 1-15, October.
    7. Yu Zhang & Jin-he Zhang & Qing Tian, 2021. "Virtual Water Trade in the Service Sector: China’s Inbound Tourism as a Case Study," IJERPH, MDPI, vol. 18(4), pages 1-20, February.
    8. Sangam Shrestha & Vishnu Pandey & Chawalit Chanamai & Debapi Ghosh, 2013. "Green, Blue and Grey Water Footprints of Primary Crops Production in Nepal," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(15), pages 5223-5243, December.
    9. Yiding Wang & Yaning Chen & Weili Duan & Li Jiao, 2022. "Evaluation of Sustainable Water Resource Use in the Tarim River Basin Based on Water Footprint," Sustainability, MDPI, vol. 14(17), pages 1-18, August.
    10. R. R. Weerasooriya & L. P. K. Liyanage & R. H. K. Rathnappriya & W. B. M. A. C. Bandara & T. A. N. T. Perera & M. H. J. P. Gunarathna & G. Y. Jayasinghe, 2021. "Industrial water conservation by water footprint and sustainable development goals: a review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 12661-12709, September.
    11. Mengran Fu & Bin Guo & Weijiao Wang & Juan Wang & Lihua Zhao & Jianlin Wang, 2019. "Comprehensive Assessment of Water Footprints and Water Scarcity Pressure for Main Crops in Shandong Province, China," Sustainability, MDPI, vol. 11(7), pages 1-18, March.
    12. Okadera, Tomohiro & Chontanawat, Jaruwan & Gheewala, Shabbir H., 2014. "Water footprint for energy production and supply in Thailand," Energy, Elsevier, vol. 77(C), pages 49-56.
    13. Wang, Lei & Li, Lianqing & Cheng, Kun & Pan, Genxing, 2019. "Comprehensive evaluation of environmental footprints of regional crop production: A case study of Chizhou City, China," Ecological Economics, Elsevier, vol. 164(C), pages 1-1.
    14. Arbizu-Milagro, Julia & Castillo-Ruiz, Francisco J. & Tascón, Alberto & Peña, Jose M., 2023. "Effects of regulated, precision and continuous deficit irrigation on the growth and productivity of a young super high-density olive orchard," Agricultural Water Management, Elsevier, vol. 286(C).
    15. Yeray Hernandez & Gustavo Naumann & Serafin Corral & Paulo Barbosa, 2020. "Water Footprint Expands with Gross Domestic Product," Sustainability, MDPI, vol. 12(20), pages 1-6, October.
    16. Cameira, Maria do Rosário & Rodrigo, Isabel & Garção, Andreia & Neves, Manuela & Ferreira, Antónia & Paredes, Paula, 2024. "Linking participatory approach and rapid appraisal methods to select potential innovations in collective irrigation systems," Agricultural Water Management, Elsevier, vol. 299(C).
    17. Ignacio Cazcarro & Rosa Duarte & Miguel Martín-Retortillo & Vicente Pinilla & Ana Serrano, 2015. "How Sustainable is the Increase in the Water Footprint of the Spanish Agricultural Sector? A Provincial Analysis between 1955 and 2005–2010," Sustainability, MDPI, vol. 7(5), pages 1-26, April.
    18. Namra Ghaffar & Bushra Noreen & Maryam Muhammad Ali & Amna Ali, 2021. "Rice Yield Estimation in Sawat Region Incorporating The Local Physio-Climatic Parameters," International Journal of Agriculture & Sustainable Development, 50sea, vol. 3(2), pages 46-50, June.
    19. Ehsan Qasemipour & Ali Abbasi & Farhad Tarahomi, 2020. "Water-Saving Scenarios Based on Input–Output Analysis and Virtual Water Concept: A Case in Iran," Sustainability, MDPI, vol. 12(3), pages 1-16, January.
    20. Wang, Haidong & Cheng, Minghui & Liao, Zhenqi & Guo, Jinjin & Zhang, Fucang & Fan, Junliang & Feng, Hao & Yang, Qiliang & Wu, Lifeng & Wang, Xiukang, 2023. "Performance evaluation of AquaCrop and DSSAT-SUBSTOR-Potato models in simulating potato growth, yield and water productivity under various drip fertigation regimes," Agricultural Water Management, Elsevier, vol. 276(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:249:y:2021:i:c:s0378377421000688. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.