IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i10p5859-d813426.html
   My bibliography  Save this article

Strategies of Recovery and Organic Recycling Used in Textile Waste Management

Author

Listed:
  • Irena Wojnowska-Baryła

    (Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Sloneczna 45G, 10-709 Olsztyn, Poland)

  • Katarzyna Bernat

    (Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Sloneczna 45G, 10-709 Olsztyn, Poland)

  • Magdalena Zaborowska

    (Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Sloneczna 45G, 10-709 Olsztyn, Poland)

Abstract

Post-consumer bio-based textile wastes are any type of garment or household article made from manufactured bio-based textiles that the owner no longer needs and decides to discard. According to the hierarchy of waste management, post-consumer textile waste should be organically recycled. However, there is still a problem with the implementation of selective collection of textile waste followed by sorting, which would prepare the waste for organic recycling. A technically achievable strategy for sorted textile waste materials consisting of only one type of fiber material, multi-material textiles are a problem for recycling purposes. Waste textiles are composed of different materials, including natural as well as synthetic non-cellulosic fibers, making bioprocessing difficult. Various strategies for recovery of valuable polymers or monomers from textile waste, including concentrated and dilute acid hydrolysis, ionic liquids as well as enzymatic hydrolysis, have been discussed. One possible process for fiber recycling is fiber recovery. Fiber reclamation is extraction of fibers from textile waste and their reuse. To ensure that organic recycling is effective and that the degradation products of textile waste do not limit the quality and quantity of organic recycling products, bio-based textile waste should be biodegradable and compostable. Although waste textiles comprising a synthetic polymers fractions are considered a threat to the environment. However, their biodegradable part has great potential for production of biological products (e.g., ethanol and biogas, enzyme synthesis). A bio-based textile waste management system should promote the development and application of novel recycling techniques, such as further development of biochemical recycling processes and the textile waste should be preceded by recovery of non-biodegradable polymers to avoid contaminating the bioproducts with nano and microplastics.

Suggested Citation

  • Irena Wojnowska-Baryła & Katarzyna Bernat & Magdalena Zaborowska, 2022. "Strategies of Recovery and Organic Recycling Used in Textile Waste Management," IJERPH, MDPI, vol. 19(10), pages 1-18, May.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:10:p:5859-:d:813426
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/10/5859/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/10/5859/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Navodya Denuwara & Juha Maijala & Marko Hakovirta, 2019. "Sustainability Benefits of RFID Technology in the Apparel Industry," Sustainability, MDPI, vol. 11(22), pages 1-14, November.
    2. Mussatto, Solange I. & Machado, Ercília M.S. & Carneiro, Lívia M. & Teixeira, José A., 2012. "Sugars metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates," Applied Energy, Elsevier, vol. 92(C), pages 763-768.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dawson Wai-Shun Suen & Eve Man-Hin Chan & Yui-Yip Lau & Rachel Hiu-Pui Lee & Paul Wai-Kei Tsang & Shaobo Ouyang & Chi-Wing Tsang, 2023. "Sustainable Textile Raw Materials: Review on Bioprocessing of Textile Waste via Electrospinning," Sustainability, MDPI, vol. 15(15), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio, 2017. "Anaerobic digestion of coffee grounds soluble fraction at laboratory scale: Evaluation of the biomethane potential," Applied Energy, Elsevier, vol. 207(C), pages 166-175.
    2. Adrianna Kamińska & Joanna Sreńscek-Nazzal & Karolina Kiełbasa & Jadwiga Grzeszczak & Jarosław Serafin & Agnieszka Wróblewska, 2023. "Carbon-Supported Nickel Catalysts—Comparison in Alpha-Pinene Oxidation Activity," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    3. Favaro, Lorenzo & Basaglia, Marina & van Zyl, Willem H. & Casella, Sergio, 2013. "Using an efficient fermenting yeast enhances ethanol production from unfiltered wheat bran hydrolysates," Applied Energy, Elsevier, vol. 102(C), pages 170-178.
    4. López, Tatiana & Riedler, Tim & Köhnen, Heiner & Fütterer, Michael, 2022. "Digital value chain restructuring and labour process transformations in the fast-fashion sector: Evidence from the value chains of Zara & H&M," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 22(4), pages 684-700.
    5. Nikolaj Kaae Kirk & Clara Navarrete & Jakob Ellegaard Juhl & José Luis Martínez & Alessandra Procentese, 2021. "The “Zero Miles Product” Concept Applied to Biofuel Production: A Case Study," Energies, MDPI, vol. 14(3), pages 1-19, January.
    6. Piotr Sołowiej & Patrycja Pochwatka & Agnieszka Wawrzyniak & Krzysztof Łapiński & Andrzej Lewicki & Jacek Dach, 2021. "The Effect of Heat Removal during Thermophilic Phase on Energetic Aspects of Biowaste Composting Process," Energies, MDPI, vol. 14(4), pages 1-14, February.
    7. Ben Atitallah, Imen & Ntaikou, Ioanna & Antonopoulou, Georgia & Alexandropoulou, Maria & Brysch-Herzberg, Michael & Nasri, Moncef & Lyberatos, Gerasimos & Mechichi, Tahar, 2020. "Evaluation of the non-conventional yeast strain Wickerhamomyces anomalus (Pichia anomala) X19 for enhanced bioethanol production using date palm sap as renewable feedstock," Renewable Energy, Elsevier, vol. 154(C), pages 71-81.
    8. Bartlomiej Gladysz & Krzysztof Ejsmont & Aldona Kluczek & Donatella Corti & Stanislaw Marciniak, 2020. "A Method for an Integrated Sustainability Assessment of RFID Technology," Resources, MDPI, vol. 9(9), pages 1-24, September.
    9. Edilson León Moreno Cárdenas & Arley David Zapata-Zapata & Daehwan Kim, 2020. "Modeling Dark Fermentation of Coffee Mucilage Wastes for Hydrogen Production: Artificial Neural Network Model vs. Fuzzy Logic Model," Energies, MDPI, vol. 13(7), pages 1-13, April.
    10. Sayed, Walaa & Cabrol, Audrey & Abdallah, Rawa & Taha, Samir & Amrane, Abdeltif & Djelal, Hayet, 2018. "Enhancement of ethanol production from synthetic medium model of hydrolysate of macroalgae," Renewable Energy, Elsevier, vol. 124(C), pages 3-10.
    11. David Orrego & Arley David Zapata-Zapata & Daehwan Kim, 2018. "Optimization and Scale-Up of Coffee Mucilage Fermentation for Ethanol Production," Energies, MDPI, vol. 11(4), pages 1-12, March.
    12. Sumera Ahmad & Suraya Miskon & Rana Alabdan & Iskander Tlili, 2020. "Towards Sustainable Textile and Apparel Industry: Exploring the Role of Business Intelligence Systems in the Era of Industry 4.0," Sustainability, MDPI, vol. 12(7), pages 1-23, March.
    13. Giuliana Ansanelli & Gabriella Fiorentino & Rosaria Chifari & Karin Meisterl & Enrica Leccisi & Amalia Zucaro, 2023. "Sustainability Assessment of Coffee Silverskin Waste Management in the Metropolitan City of Naples (Italy): A Life Cycle Perspective," Sustainability, MDPI, vol. 15(23), pages 1-27, November.
    14. Małgorzata Smuga-Kogut & Bartosz Walendzik & Katarzyna Lewicka-Rataj & Tomasz Kogut & Leszek Bychto & Piotr Jachimowicz & Agnieszka Cydzik-Kwiatkowska, 2024. "Application of Proton Ionic Liquid in the Process of Obtaining Bioethanol from Hemp Stalks," Energies, MDPI, vol. 17(4), pages 1-15, February.
    15. Rojas-Chamorro, José A. & Romero, Inmaculada & López-Linares, Juan C. & Castro, Eulogio, 2020. "Brewer’s spent grain as a source of renewable fuel through optimized dilute acid pretreatment," Renewable Energy, Elsevier, vol. 148(C), pages 81-90.
    16. Domínguez, Elena & Romaní, Aloia & Domingues, Lucília & Garrote, Gil, 2017. "Evaluation of strategies for second generation bioethanol production from fast growing biomass Paulownia within a biorefinery scheme," Applied Energy, Elsevier, vol. 187(C), pages 777-789.
    17. Sumera Ahmad & Suraya Miskon & Rana Alabdan & Iskander Tlili, 2020. "Exploration of Influential Determinants for the Adoption of Business Intelligence System in the Textile and Apparel Industry," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    18. Zhang, Xinghua & Wang, Tiejun & Ma, Longlong & Zhang, Qi & Huang, Xiaoming & Yu, Yuxiao, 2013. "Production of cyclohexane from lignin degradation compounds over Ni/ZrO2–SiO2 catalysts," Applied Energy, Elsevier, vol. 112(C), pages 533-538.
    19. Bartosz Pawłowicz & Marek Kołcz & Piotr Jankowski-Mihułowicz, 2022. "The Idea of RFIDtex Transponders Utilization in Household Appliances on the Example of a Washing Machine Demonstrator," Energies, MDPI, vol. 15(7), pages 1-19, April.
    20. Edilson León Moreno Cárdenas & Arley David Zapata-Zapata & Daehwan Kim, 2018. "Hydrogen Production from Coffee Mucilage in Dark Fermentation with Organic Wastes," Energies, MDPI, vol. 12(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:10:p:5859-:d:813426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.