IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2018i1p71-d193416.html
   My bibliography  Save this article

Hydrogen Production from Coffee Mucilage in Dark Fermentation with Organic Wastes

Author

Listed:
  • Edilson León Moreno Cárdenas

    (Laboratorio de Mecanización Agrícola, Departamento de Ingeniería Agrícolay de Alimentos, Universidad Nacional de Colombia-Sede Medellín, Carrera 64c # 63-120, Código Postal 050034, Colombia
    Authors contributed equally to the study.)

  • Arley David Zapata-Zapata

    (Universidad Nacional de Colombia-Sede Medellín-Escuela de Química-Laboratorio de Procesos Biológicos-Carrera 65 # 59A-110, Medellín, Código Postal 050034, Colombia
    Authors contributed equally to the study.)

  • Daehwan Kim

    (Department of Biology, Hood College, 401 Rosemont Avenue, Frederick, MD 21701, USA)

Abstract

One of primary issues in the coffee manufacturing industry is the production of large amounts of undesirable residues, which include the pericarp (outer skin), pulp (outer mesocarp), parchment (endocarp), silver-skin (epidermis) and mucilage (inner mesocarp) that cause environmental problems due to toxic molecules contained therein. This study evaluated the optimal hydrogen production from coffee mucilage combined with organic wastes (wholesale market garbage) in a dark fermentation process. The supplementation of organic wastes offered appropriate carbon and nitrogen sources with further nutrients; it was positively effective in achieving cumulative hydrogen production. Three different ratios of coffee mucilage and organic wastes (8:2, 5:5, and 2:8) were tested in 30 L bioreactors using two-level factorial design experiments. The highest cumulative hydrogen volume of 25.9 L was gained for an 8:2 ratio (coffee mucilage: organic wastes) after 72 h, which corresponded to 1.295 L hydrogen/L substrates (0.248 mol hydrogen/mol hexose). Biochemical identification of microorganisms found that seven microorganisms were involved in the hydrogen metabolism. Further studies of anaerobic fermentative digestion with each isolated pure bacterium under similar experimental conditions reached a lower final hydrogen yield (up to 9.3 L) than the result from the non-isolated sample (25.9 L). Interestingly, however, co-cultivation of two identified microorganisms ( Kocuria kristinae and Brevibacillus laterosporus ), who were relatively highly associated with hydrogen production, gave a higher yield (14.7 L) than single bacterium inoculum but lower than that of the non-isolated tests. This work confirms that the re-utilization of coffee mucilage combined with organic wastes is practical for hydrogen fermentation in anaerobic conditions, and it would be influenced by the bacterial consortium involved.

Suggested Citation

  • Edilson León Moreno Cárdenas & Arley David Zapata-Zapata & Daehwan Kim, 2018. "Hydrogen Production from Coffee Mucilage in Dark Fermentation with Organic Wastes," Energies, MDPI, vol. 12(1), pages 1-12, December.
  • Handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:71-:d:193416
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/1/71/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/1/71/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Orrego & Arley David Zapata-Zapata & Daehwan Kim, 2018. "Optimization and Scale-Up of Coffee Mucilage Fermentation for Ethanol Production," Energies, MDPI, vol. 11(4), pages 1-12, March.
    2. Bala-Amutha, K. & Murugesan, A.G., 2013. "Biohydrogen production using corn stalk employing Bacillus licheniformis MSU AGM 2 strain," Renewable Energy, Elsevier, vol. 50(C), pages 621-627.
    3. Mussatto, Solange I. & Machado, Ercília M.S. & Carneiro, Lívia M. & Teixeira, José A., 2012. "Sugars metabolism and ethanol production by different yeast strains from coffee industry wastes hydrolysates," Applied Energy, Elsevier, vol. 92(C), pages 763-768.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anita Šalić & Bruno Zelić, 2022. "A Game Changer: Microfluidic Technology for Enhancing Biohydrogen Production—Small Size for Great Performance," Energies, MDPI, vol. 15(19), pages 1-22, September.
    2. Gabriel S. Aruwajoye & Alaika Kassim & Akshay K. Saha & Evariste B. Gueguim Kana, 2020. "Prospects for the Improvement of Bioethanol and Biohydrogen Production from Mixed Starch-Based Agricultural Wastes," Energies, MDPI, vol. 13(24), pages 1-22, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edilson León Moreno Cárdenas & Arley David Zapata-Zapata & Daehwan Kim, 2020. "Modeling Dark Fermentation of Coffee Mucilage Wastes for Hydrogen Production: Artificial Neural Network Model vs. Fuzzy Logic Model," Energies, MDPI, vol. 13(7), pages 1-13, April.
    2. Luz, Fábio Codignole & Cordiner, Stefano & Manni, Alessandro & Mulone, Vincenzo & Rocco, Vittorio, 2017. "Anaerobic digestion of coffee grounds soluble fraction at laboratory scale: Evaluation of the biomethane potential," Applied Energy, Elsevier, vol. 207(C), pages 166-175.
    3. Irena Wojnowska-Baryła & Katarzyna Bernat & Magdalena Zaborowska, 2022. "Strategies of Recovery and Organic Recycling Used in Textile Waste Management," IJERPH, MDPI, vol. 19(10), pages 1-18, May.
    4. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    5. Azman, Nadia Farhana & Abdeshahian, Peyman & Kadier, Abudukeremu & Shukor, Hafiza & Al-Shorgani, Najeeb Kaid Nasser & Hamid, Aidil Abdul & Kalil, Mohd Sahaid, 2016. "Utilization of palm kernel cake as a renewable feedstock for fermentative hydrogen production," Renewable Energy, Elsevier, vol. 93(C), pages 700-708.
    6. Adrianna Kamińska & Joanna Sreńscek-Nazzal & Karolina Kiełbasa & Jadwiga Grzeszczak & Jarosław Serafin & Agnieszka Wróblewska, 2023. "Carbon-Supported Nickel Catalysts—Comparison in Alpha-Pinene Oxidation Activity," Sustainability, MDPI, vol. 15(6), pages 1-23, March.
    7. Favaro, Lorenzo & Basaglia, Marina & van Zyl, Willem H. & Casella, Sergio, 2013. "Using an efficient fermenting yeast enhances ethanol production from unfiltered wheat bran hydrolysates," Applied Energy, Elsevier, vol. 102(C), pages 170-178.
    8. Dimitar Karakashev & Yifeng Zhang, 2018. "BioEnergy and BioChemicals Production from Biomass and Residual Resources," Energies, MDPI, vol. 11(8), pages 1-6, August.
    9. Nikolaj Kaae Kirk & Clara Navarrete & Jakob Ellegaard Juhl & José Luis Martínez & Alessandra Procentese, 2021. "The “Zero Miles Product” Concept Applied to Biofuel Production: A Case Study," Energies, MDPI, vol. 14(3), pages 1-19, January.
    10. Piotr Sołowiej & Patrycja Pochwatka & Agnieszka Wawrzyniak & Krzysztof Łapiński & Andrzej Lewicki & Jacek Dach, 2021. "The Effect of Heat Removal during Thermophilic Phase on Energetic Aspects of Biowaste Composting Process," Energies, MDPI, vol. 14(4), pages 1-14, February.
    11. Ben Atitallah, Imen & Ntaikou, Ioanna & Antonopoulou, Georgia & Alexandropoulou, Maria & Brysch-Herzberg, Michael & Nasri, Moncef & Lyberatos, Gerasimos & Mechichi, Tahar, 2020. "Evaluation of the non-conventional yeast strain Wickerhamomyces anomalus (Pichia anomala) X19 for enhanced bioethanol production using date palm sap as renewable feedstock," Renewable Energy, Elsevier, vol. 154(C), pages 71-81.
    12. Sayed, Walaa & Cabrol, Audrey & Abdallah, Rawa & Taha, Samir & Amrane, Abdeltif & Djelal, Hayet, 2018. "Enhancement of ethanol production from synthetic medium model of hydrolysate of macroalgae," Renewable Energy, Elsevier, vol. 124(C), pages 3-10.
    13. David Orrego & Arley David Zapata-Zapata & Daehwan Kim, 2018. "Optimization and Scale-Up of Coffee Mucilage Fermentation for Ethanol Production," Energies, MDPI, vol. 11(4), pages 1-12, March.
    14. Giuliana Ansanelli & Gabriella Fiorentino & Rosaria Chifari & Karin Meisterl & Enrica Leccisi & Amalia Zucaro, 2023. "Sustainability Assessment of Coffee Silverskin Waste Management in the Metropolitan City of Naples (Italy): A Life Cycle Perspective," Sustainability, MDPI, vol. 15(23), pages 1-27, November.
    15. Małgorzata Smuga-Kogut & Bartosz Walendzik & Katarzyna Lewicka-Rataj & Tomasz Kogut & Leszek Bychto & Piotr Jachimowicz & Agnieszka Cydzik-Kwiatkowska, 2024. "Application of Proton Ionic Liquid in the Process of Obtaining Bioethanol from Hemp Stalks," Energies, MDPI, vol. 17(4), pages 1-15, February.
    16. Fariha Kanwal & Angel A. J. Torriero, 2022. "Biohydrogen—A Green Fuel for Sustainable Energy Solutions," Energies, MDPI, vol. 15(20), pages 1-20, October.
    17. Rojas-Chamorro, José A. & Romero, Inmaculada & López-Linares, Juan C. & Castro, Eulogio, 2020. "Brewer’s spent grain as a source of renewable fuel through optimized dilute acid pretreatment," Renewable Energy, Elsevier, vol. 148(C), pages 81-90.
    18. Seifert, K. & Zagrodnik, R. & Stodolny, M. & Łaniecki, M., 2018. "Biohydrogen production from chewing gum manufacturing residue in a two-step process of dark fermentation and photofermentation," Renewable Energy, Elsevier, vol. 122(C), pages 526-532.
    19. Domínguez, Elena & Romaní, Aloia & Domingues, Lucília & Garrote, Gil, 2017. "Evaluation of strategies for second generation bioethanol production from fast growing biomass Paulownia within a biorefinery scheme," Applied Energy, Elsevier, vol. 187(C), pages 777-789.
    20. Zhang, Xinghua & Wang, Tiejun & Ma, Longlong & Zhang, Qi & Huang, Xiaoming & Yu, Yuxiao, 2013. "Production of cyclohexane from lignin degradation compounds over Ni/ZrO2–SiO2 catalysts," Applied Energy, Elsevier, vol. 112(C), pages 533-538.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2018:i:1:p:71-:d:193416. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.