IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i9p4655-d544668.html
   My bibliography  Save this article

Relationship of Test Positivity Rates with COVID-19 Epidemic Dynamics

Author

Listed:
  • Yuki Furuse

    (Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8501, Japan)

  • Yura K. Ko

    (Department of Virology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
    National Institute of Infectious Diseases, Tokyo 208-0011, Japan)

  • Kota Ninomiya

    (National Institute of Infectious Diseases, Tokyo 208-0011, Japan
    National Institute of Public Health, Wako 351-0197, Japan)

  • Motoi Suzuki

    (National Institute of Infectious Diseases, Tokyo 208-0011, Japan)

  • Hitoshi Oshitani

    (Department of Virology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan)

Abstract

Detection and isolation of infected people are believed to play an important role in the control of the COVID-19 pandemic. Some countries conduct large-scale screenings for testing, whereas others test mainly people with high prior probability of infection such as showing severe symptoms and/or having an epidemiological link with a known or suspected case or cluster of cases. However, what a good testing strategy is and whether the difference in testing strategy shows a meaningful, measurable impact on the COVID-19 epidemic remain unknown. Here, we showed that patterns of association between effective reproduction number (Rt) and test positivity rate can illuminate differences in testing situation among different areas, using global and local data from Japan. This association can also evaluate the adequacy of current testing systems and what information is captured in COVID-19 surveillance. The differences in testing systems alone cannot predict the results of epidemic containment efforts. Furthermore, monitoring test positivity rates and severe case proportions among the nonelderly can predict imminent case count increases. Monitoring test positivity rates in conjunction with the concurrent Rt could be useful to assess and strengthen public health management and testing systems and deepen understanding of COVID-19 epidemic dynamics.

Suggested Citation

  • Yuki Furuse & Yura K. Ko & Kota Ninomiya & Motoi Suzuki & Hitoshi Oshitani, 2021. "Relationship of Test Positivity Rates with COVID-19 Epidemic Dynamics," IJERPH, MDPI, vol. 18(9), pages 1-10, April.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:9:p:4655-:d:544668
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/9/4655/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/9/4655/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Adam, 2020. "A guide to R — the pandemic’s misunderstood metric," Nature, Nature, vol. 583(7816), pages 346-348, July.
    2. Lalmuanawma, Samuel & Hussain, Jamal & Chhakchhuak, Lalrinfela, 2020. "Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cristhian Leonardo Urbano-Leon & Manuel Escabias, 2022. "Comparison of Positivity in Two Epidemic Waves of COVID-19 in Colombia with FDA," Stats, MDPI, vol. 5(4), pages 1-11, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ortiz-Barrios, Miguel & Arias-Fonseca, Sebastián & Ishizaka, Alessio & Barbati, Maria & Avendaño-Collante, Betty & Navarro-Jiménez, Eduardo, 2023. "Artificial intelligence and discrete-event simulation for capacity management of intensive care units during the Covid-19 pandemic: A case study," Journal of Business Research, Elsevier, vol. 160(C).
    2. Marcel Lucas Chee & Marcus Eng Hock Ong & Fahad Javaid Siddiqui & Zhongheng Zhang & Shir Lynn Lim & Andrew Fu Wah Ho & Nan Liu, 2021. "Artificial Intelligence Applications for COVID-19 in Intensive Care and Emergency Settings: A Systematic Review," IJERPH, MDPI, vol. 18(9), pages 1-15, April.
    3. Srinka Basu & Sugata Sen, 2023. "COVID 19 Pandemic, Socio-Economic Behaviour and Infection Characteristics: An Inter-Country Predictive Study Using Deep Learning," Computational Economics, Springer;Society for Computational Economics, vol. 61(2), pages 645-676, February.
    4. Sini V. Pillai & Ranjith S. Kumar, 2021. "The role of data-driven artificial intelligence on COVID-19 disease management in public sphere: a review," DECISION: Official Journal of the Indian Institute of Management Calcutta, Springer;Indian Institute of Management Calcutta, vol. 48(4), pages 375-389, December.
    5. Faizeh Hatami & Shi Chen & Rajib Paul & Jean-Claude Thill, 2022. "Simulating and Forecasting the COVID-19 Spread in a U.S. Metropolitan Region with a Spatial SEIR Model," IJERPH, MDPI, vol. 19(23), pages 1-16, November.
    6. Wang, Lingxiao & Hare, Brian M. & Zhou, Kai & Stöcker, Horst & Scholten, Olaf, 2023. "Identifying lightning structures via machine learning," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    7. Mohammad Reza Davahli & Krzysztof Fiok & Waldemar Karwowski & Awad M. Aljuaid & Redha Taiar, 2021. "Predicting the Dynamics of the COVID-19 Pandemic in the United States Using Graph Theory-Based Neural Networks," IJERPH, MDPI, vol. 18(7), pages 1-12, April.
    8. Manuel Sánchez-Montañés & Pablo Rodríguez-Belenguer & Antonio J. Serrano-López & Emilio Soria-Olivas & Yasser Alakhdar-Mohmara, 2020. "Machine Learning for Mortality Analysis in Patients with COVID-19," IJERPH, MDPI, vol. 17(22), pages 1-20, November.
    9. Ehab M. Almetwally, 2022. "The Odd Weibull Inverse Topp–Leone Distribution with Applications to COVID-19 Data," Annals of Data Science, Springer, vol. 9(1), pages 121-140, February.
    10. Mario A Quiroz-Juárez & Armando Torres-Gómez & Irma Hoyo-Ulloa & Roberto de J León-Montiel & Alfred B U’Ren, 2021. "Identification of high-risk COVID-19 patients using machine learning," PLOS ONE, Public Library of Science, vol. 16(9), pages 1-21, September.
    11. Szczygielski, Jan Jakub & Charteris, Ailie & Bwanya, Princess Rutendo & Brzeszczyński, Janusz, 2023. "Which COVID-19 information really impacts stock markets?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 84(C).
    12. Greenhalgh, Trisha & Engebretsen, Eivind, 2022. "The science-policy relationship in times of crisis: An urgent call for a pragmatist turn," Social Science & Medicine, Elsevier, vol. 306(C).
    13. Anil Babu Payedimarri & Diego Concina & Luigi Portinale & Massimo Canonico & Deborah Seys & Kris Vanhaecht & Massimiliano Panella, 2021. "Prediction Models for Public Health Containment Measures on COVID-19 Using Artificial Intelligence and Machine Learning: A Systematic Review," IJERPH, MDPI, vol. 18(9), pages 1-11, April.
    14. Yan, Tao & Wong, Pak Kin & Ren, Hao & Wang, Huaqiao & Wang, Jiangtao & Li, Yang, 2020. "Automatic distinction between COVID-19 and common pneumonia using multi-scale convolutional neural network on chest CT scans," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    15. Luca Scrucca, 2022. "A COVINDEX based on a GAM beta regression model with an application to the COVID-19 pandemic in Italy," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 881-900, October.
    16. Sharov, Konstantin S., 2020. "Creating and applying SIR modified compartmental model for calculation of COVID-19 lockdown efficiency," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    17. Yao, Haitang & Liu, Wei & Wu, Chia-Huei & Yuan, Yu-Hsi, 2022. "The imprinting effect of SARS experience on the fear of COVID-19: The role of AI and big data," Socio-Economic Planning Sciences, Elsevier, vol. 80(C).
    18. Wajdi Aljedaani & Eysha Saad & Furqan Rustam & Isabel de la Torre Díez & Imran Ashraf, 2022. "Role of Artificial Intelligence for Analysis of COVID-19 Vaccination-Related Tweets: Opportunities, Challenges, and Future Trends," Mathematics, MDPI, vol. 10(17), pages 1-33, September.
    19. Miraj Ahmed Bhuiyan & Tiziana Crovella & Annarita Paiano & Helena Alves, 2021. "A Review of Research on Tourism Industry, Economic Crisis and Mitigation Process of the Loss: Analysis on Pre, During and Post Pandemic Situation," Sustainability, MDPI, vol. 13(18), pages 1-27, September.
    20. Jonathan S. Talahua & Jorge Buele & P. Calvopiña & José Varela-Aldás, 2021. "Facial Recognition System for People with and without Face Mask in Times of the COVID-19 Pandemic," Sustainability, MDPI, vol. 13(12), pages 1-19, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:9:p:4655-:d:544668. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.