IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i8p3910-d532268.html
   My bibliography  Save this article

SARS-CoV-2 Seroprevalence among Health Care Workers—A Voluntary Screening Study in a Regional Medical Center in Southern Germany

Author

Listed:
  • Katharina Müller

    (Bundeswehr Institute of Microbiology, 80937 Munich, Germany
    German Centre for Infection Research (DZIF), Partner Site Munich, 80937 Munich, Germany
    These authors contributed equally to this work.)

  • Philipp Girl

    (Bundeswehr Institute of Microbiology, 80937 Munich, Germany
    German Centre for Infection Research (DZIF), Partner Site Munich, 80937 Munich, Germany
    These authors contributed equally to this work.)

  • Michaela Ruhnke

    (Praxis Dr. J. Borde, Gesundheitszentrum Oberkirch, 77704 Oberkirch, Germany)

  • Mareike Spranger

    (Praxis Dr. J. Borde, Gesundheitszentrum Oberkirch, 77704 Oberkirch, Germany)

  • Klaus Kaier

    (Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, 79098 Freiburg, Germany)

  • Heiner von Buttlar

    (Bundeswehr Institute of Microbiology, 80937 Munich, Germany
    German Centre for Infection Research (DZIF), Partner Site Munich, 80937 Munich, Germany)

  • Gerhard Dobler

    (Bundeswehr Institute of Microbiology, 80937 Munich, Germany
    German Centre for Infection Research (DZIF), Partner Site Munich, 80937 Munich, Germany)

  • Johannes P. Borde

    (Praxis Dr. J. Borde, Gesundheitszentrum Oberkirch, 77704 Oberkirch, Germany
    Department of Medicine II, Division of Infectious Diseases, Faculty of Medicine and Medical Center, University of Freiburg, 79098 Freiburg, Germany)

Abstract

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is associated with a potentially severe clinical manifestation, coronavirus disease 2019 (COVID-19), and currently poses a worldwide challenge. Health care workers (HCWs) are at the forefront of any health care system and thus especially at risk for SARS-CoV-2 infection due to their potentially frequent and close contact with patients suffering from COVID-19. Serum samples from 198 HCWs with direct patient contact of a regional medical center and several outpatient facilities were collected during the early phase of the pandemic (April 2020) and tested for SARS-CoV-2-specific antibodies. Commercially available IgA- and IgG-specific ELISAs were used as screening technique, followed by an in-house neutralization assay for confirmation. Neutralizing SARS-CoV-2-specific antibodies were detected in seven of 198 (3.5%) tested HCWs. There was no significant difference in seroprevalence between the regional medical center (3.4%) and the outpatient institution (5%). The overall seroprevalence of neutralizing SARS-CoV-2-specific antibodies in HCWs in both a large regional medical center and a small outpatient institution was low (3.5%) at the beginning of April 2020. The findings may indicate that the timely implemented preventive measures (strict hygiene protocols, personal protective equipment) were effective to protect from transmission of an airborne virus when only limited information on the pathogen was available.

Suggested Citation

  • Katharina Müller & Philipp Girl & Michaela Ruhnke & Mareike Spranger & Klaus Kaier & Heiner von Buttlar & Gerhard Dobler & Johannes P. Borde, 2021. "SARS-CoV-2 Seroprevalence among Health Care Workers—A Voluntary Screening Study in a Regional Medical Center in Southern Germany," IJERPH, MDPI, vol. 18(8), pages 1-10, April.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:8:p:3910-:d:532268
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/8/3910/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/8/3910/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roman Wölfel & Victor M. Corman & Wolfgang Guggemos & Michael Seilmaier & Sabine Zange & Marcel A. Müller & Daniela Niemeyer & Terry C. Jones & Patrick Vollmar & Camilla Rothe & Michael Hoelscher & To, 2020. "Author Correction: Virological assessment of hospitalized patients with COVID-2019," Nature, Nature, vol. 588(7839), pages 35-35, December.
    2. Ann-Sofie Rudberg & Sebastian Havervall & Anna Månberg & August Jernbom Falk & Katherina Aguilera & Henry Ng & Lena Gabrielsson & Ann-Christin Salomonsson & Leo Hanke & Ben Murrell & Gerald McInerney , 2020. "SARS-CoV-2 exposure, symptoms and seroprevalence in healthcare workers in Sweden," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    3. Roman Wölfel & Victor M. Corman & Wolfgang Guggemos & Michael Seilmaier & Sabine Zange & Marcel A. Müller & Daniela Niemeyer & Terry C. Jones & Patrick Vollmar & Camilla Rothe & Michael Hoelscher & To, 2020. "Virological assessment of hospitalized patients with COVID-2019," Nature, Nature, vol. 581(7809), pages 465-469, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anke Hildebrandt & Oktay Hökelekli & Lutz Uflacker & Henrik Rudolf & Michael Paulussen & Sören G. Gatermann, 2022. "Seroprevalence of SARS-CoV-2 Antibodies in Employees of Three Hospitals of a Secondary Care Hospital Network in Germany and an Associated Fire Brigade: Results of a Repeated Cross-Sectional Surveillan," IJERPH, MDPI, vol. 19(4), pages 1-15, February.
    2. Lionel Larribère & Jelizaveta Gordejeva & Lisa Kuhnhenn & Maximilian Kurscheidt & Monika Pobiruchin & Dilyana Vladimirova & Maria Martin & Markus Roser & Wendelin Schramm & Uwe M. Martens & Tatjana Ei, 2021. "Assessment of SARS-CoV-2 Infection among Healthcare Workers of a German COVID-19 Treatment Center," IJERPH, MDPI, vol. 18(13), pages 1-11, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shanlin Ke & Scott T. Weiss & Yang-Yu Liu, 2022. "Dissecting the role of the human microbiome in COVID-19 via metagenome-assembled genomes," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    2. Tobias Schlager & Ashley V. Whillans, 2022. "People underestimate the probability of contracting the coronavirus from friends," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-11, December.
    3. Joseph Pateras & Preetam Ghosh, 2022. "A Computational Framework for Exploring SARS-CoV-2 Pharmacodynamic Dose and Timing Regimes," Mathematics, MDPI, vol. 10(20), pages 1-12, October.
    4. Marta Baselga & Juan J. Alba & Alberto J. Schuhmacher, 2022. "The Control of Metabolic CO 2 in Public Transport as a Strategy to Reduce the Transmission of Respiratory Infectious Diseases," IJERPH, MDPI, vol. 19(11), pages 1-19, May.
    5. Lisa Cariani & Beatrice Silvia Orena & Federico Ambrogi & Simone Gambazza & Anna Maraschini & Antonella Dodaro & Massimo Oggioni & Annarosa Orlandi & Alessia Pirrone & Sara Uceda Renteria & Mara Berna, 2020. "Time Length of Negativization and Cycle Threshold Values in 182 Healthcare Workers with Covid-19 in Milan, Italy: An Observational Cohort Study," IJERPH, MDPI, vol. 17(15), pages 1-10, July.
    6. Dapeng Li & David R. Martinez & Alexandra Schäfer & Haiyan Chen & Maggie Barr & Laura L. Sutherland & Esther Lee & Robert Parks & Dieter Mielke & Whitney Edwards & Amanda Newman & Kevin W. Bock & Mahn, 2022. "Breadth of SARS-CoV-2 neutralization and protection induced by a nanoparticle vaccine," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    7. Lorenz Schubert & Robert Strassl & Heinz Burgmann & Gabriella Dvorak & Matthias Karer & Michael Kundi & Manuel Kussmann & Heimo Lagler & Felix Lötsch & Christopher Milacek & Markus Obermueller & Zoe O, 2021. "A Longitudinal Seroprevalence Study Evaluating Infection Control and Prevention Strategies at a Large Tertiary Care Center with Low COVID-19 Incidence," IJERPH, MDPI, vol. 18(8), pages 1-10, April.
    8. Susanna Esposito & Federico Marchetti & Marcello Lanari & Fabio Caramelli & Alessandro De Fanti & Gianluca Vergine & Lorenzo Iughetti & Martina Fornaro & Agnese Suppiej & Stefano Zona & Andrea Pession, 2021. "COVID-19 Management in the Pediatric Age: Consensus Document of the COVID-19 Working Group in Paediatrics of the Emilia-Romagna Region (RE-CO-Ped), Italy," IJERPH, MDPI, vol. 18(8), pages 1-29, April.
    9. Ramon Roozendaal & Laura Solforosi & Daniel J. Stieh & Jan Serroyen & Roel Straetemans & Anna Dari & Muriel Boulton & Frank Wegmann & Sietske K. Rosendahl Huber & Joan E. M. van der Lubbe & Jenny Hend, 2021. "SARS-CoV-2 binding and neutralizing antibody levels after Ad26.COV2.S vaccination predict durable protection in rhesus macaques," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    10. Shengwei Zhu & Tong Lin & John D. Spengler & Jose Guillermo Cedeño Laurent & Jelena Srebric, 2022. "The Influence of Plastic Barriers on Aerosol Infection Risk during Airport Security Checks," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    11. Sasha Harris-Lovett & Kara L. Nelson & Paloma Beamer & Heather N. Bischel & Aaron Bivins & Andrea Bruder & Caitlyn Butler & Todd D. Camenisch & Susan K. De Long & Smruthi Karthikeyan & David A. Larsen, 2021. "Wastewater Surveillance for SARS-CoV-2 on College Campuses: Initial Efforts, Lessons Learned, and Research Needs," IJERPH, MDPI, vol. 18(9), pages 1-20, April.
    12. Juan Liu & Fengfeng Mao & Jianhe Chen & Shuaiyao Lu & Yonghe Qi & Yinyan Sun & Linqiang Fang & Man Lung Yeung & Chunmei Liu & Guimei Yu & Guangyu Li & Ximing Liu & Yuansheng Yao & Panpan Huang & Dongx, 2023. "An IgM-like inhalable ACE2 fusion protein broadly neutralizes SARS-CoV-2 variants," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Maria de Lourdes Aguiar-Oliveira & Aline Campos & Aline R. Matos & Caroline Rigotto & Adriana Sotero-Martins & Paulo F. P. Teixeira & Marilda M. Siqueira, 2020. "Wastewater-Based Epidemiology (WBE) and Viral Detection in Polluted Surface Water: A Valuable Tool for COVID-19 Surveillance—A Brief Review," IJERPH, MDPI, vol. 17(24), pages 1-19, December.
    14. Kumawat, Nitesh & Rashid, Mubasher & Srivastava, Akriti & Tripathi, Jai Prakash, 2023. "Hysteresis and Hopf bifurcation: Deciphering the dynamics of an in-host model of SARS-CoV-2 with logistic target cell growth and sigmoidal immune response," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    15. Nagel, Kai & Rakow, Christian & Müller, Sebastian A., 2021. "Realistic agent-based simulation of infection dynamics and percolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    16. Rabih Ghostine & Mohamad Gharamti & Sally Hassrouny & Ibrahim Hoteit, 2021. "Mathematical Modeling of Immune Responses against SARS-CoV-2 Using an Ensemble Kalman Filter," Mathematics, MDPI, vol. 9(19), pages 1-13, September.
    17. Patrick T. Acer & Lauren M. Kelly & Andrew A. Lover & Caitlyn S. Butler, 2022. "Quantifying the Relationship between SARS-CoV-2 Wastewater Concentrations and Building-Level COVID-19 Prevalence at an Isolation Residence: A Passive Sampling Approach," IJERPH, MDPI, vol. 19(18), pages 1-15, September.
    18. Afnan Al Agha & Safiya Alshehaiween & Ahmed Elaiw & Matuka Alshaikh, 2021. "A Global Analysis of Delayed SARS-CoV-2/Cancer Model with Immune Response," Mathematics, MDPI, vol. 9(11), pages 1-27, June.
    19. Simin Zou & Xuhui He, 2021. "Effect of Train-Induced Wind on the Transmission of COVID-19: A New Insight into Potential Infectious Risks," IJERPH, MDPI, vol. 18(15), pages 1-17, August.
    20. Ioana Boeraș & Angela Curtean-Bănăduc & Doru Bănăduc & Gabriela Cioca, 2022. "Anthropogenic Sewage Water Circuit as Vector for SARS-CoV-2 Viral ARN Transport and Public Health Assessment, Monitoring and Forecasting—Sibiu Metropolitan Area (Transylvania/Romania) Study Case," IJERPH, MDPI, vol. 19(18), pages 1-12, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:8:p:3910-:d:532268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.