IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i15p8164-d606931.html
   My bibliography  Save this article

Effect of Train-Induced Wind on the Transmission of COVID-19: A New Insight into Potential Infectious Risks

Author

Listed:
  • Simin Zou

    (School of Civil Engineering, Central South University, Changsha 410075, China
    Natiaonl Engineering Laboratory for High Speed Railway Construction, Changsha 410075, China
    Joint International Resarch Laboratory of Key Technology for Rail Traffic Safety, Changsha 410075, China
    Hunan Provincial Key Laboratory for Disaster Prevention and Mitigation of Rail Transit Engineering Structure, Changsha 410075, China)

  • Xuhui He

    (School of Civil Engineering, Central South University, Changsha 410075, China
    Natiaonl Engineering Laboratory for High Speed Railway Construction, Changsha 410075, China
    Joint International Resarch Laboratory of Key Technology for Rail Traffic Safety, Changsha 410075, China
    Hunan Provincial Key Laboratory for Disaster Prevention and Mitigation of Rail Transit Engineering Structure, Changsha 410075, China)

Abstract

The unprecedented COVID-19 pandemic has caused a traffic tie-up across the world. In addition to home quarantine orders and travel bans, the social distance guideline of about six feet was enacted to reduce the risk of contagion. However, with recent life gradually returning to normal, the crisis is not over. In this research, a moving train test and a Gaussian puff model were employed to investigate the impact of wind raised by a train running on the transmission and dispersion of SARS-CoV-2 from infected individuals. Our findings suggest that the 2 m social distance guideline may not be enough; under train-induced wind action, human respiratory disease-carrier droplets may travel to unexpected places. However, there are deficiencies in passenger safety guidelines and it is necessary to improve the quantitative research in the relationship between train-induced wind and virus transmission. All these findings could provide a fresh insight to contain the spread of COVID-19 and provide a basis for preventing and controlling the pandemic virus, and probe into strategies for control of the disease in the future.

Suggested Citation

  • Simin Zou & Xuhui He, 2021. "Effect of Train-Induced Wind on the Transmission of COVID-19: A New Insight into Potential Infectious Risks," IJERPH, MDPI, vol. 18(15), pages 1-17, August.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:15:p:8164-:d:606931
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/15/8164/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/15/8164/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roman Wölfel & Victor M. Corman & Wolfgang Guggemos & Michael Seilmaier & Sabine Zange & Marcel A. Müller & Daniela Niemeyer & Terry C. Jones & Patrick Vollmar & Camilla Rothe & Michael Hoelscher & To, 2020. "Author Correction: Virological assessment of hospitalized patients with COVID-2019," Nature, Nature, vol. 588(7839), pages 35-35, December.
    2. Leonardo López & Xavier Rodó, 2020. "The end of social confinement and COVID-19 re-emergence risk," Nature Human Behaviour, Nature, vol. 4(7), pages 746-755, July.
    3. Dyani Lewis, 2020. "Mounting evidence suggests coronavirus is airborne — but health advice has not caught up," Nature, Nature, vol. 583(7817), pages 510-513, July.
    4. Roman Wölfel & Victor M. Corman & Wolfgang Guggemos & Michael Seilmaier & Sabine Zange & Marcel A. Müller & Daniela Niemeyer & Terry C. Jones & Patrick Vollmar & Camilla Rothe & Michael Hoelscher & To, 2020. "Virological assessment of hospitalized patients with COVID-2019," Nature, Nature, vol. 581(7809), pages 465-469, May.
    5. Jennifer Frazer, 2012. "Infectious disease: Blowing in the wind," Nature, Nature, vol. 484(7392), pages 21-23, April.
    6. Yun Qiu & Xi Chen & Wei Shi, 2020. "Impacts of social and economic factors on the transmission of coronavirus disease 2019 (COVID-19) in China," Journal of Population Economics, Springer;European Society for Population Economics, vol. 33(4), pages 1127-1172, October.
    7. Sneha Gautam & Luc Hens, 2020. "COVID-19: impact by and on the environment, health and economy," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 4953-4954, August.
    8. Andrew Rambaut & Oliver G. Pybus & Martha I. Nelson & Cecile Viboud & Jeffery K. Taubenberger & Edward C. Holmes, 2008. "The genomic and epidemiological dynamics of human influenza A virus," Nature, Nature, vol. 453(7195), pages 615-619, May.
    9. Cobus van Staden, 2020. "COVID-19 and the crisis of national development," Nature Human Behaviour, Nature, vol. 4(5), pages 443-444, May.
    10. Jayson S. Jia & Xin Lu & Yun Yuan & Ge Xu & Jianmin Jia & Nicholas A. Christakis, 2020. "Population flow drives spatio-temporal distribution of COVID-19 in China," Nature, Nature, vol. 582(7812), pages 389-394, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. John R. Birge & Ozan Candogan & Yiding Feng, 2022. "Controlling Epidemic Spread: Reducing Economic Losses with Targeted Closures," Management Science, INFORMS, vol. 68(5), pages 3175-3195, May.
    2. Shanlin Ke & Scott T. Weiss & Yang-Yu Liu, 2022. "Dissecting the role of the human microbiome in COVID-19 via metagenome-assembled genomes," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    3. Tobias Schlager & Ashley V. Whillans, 2022. "People underestimate the probability of contracting the coronavirus from friends," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-11, December.
    4. Joseph Pateras & Preetam Ghosh, 2022. "A Computational Framework for Exploring SARS-CoV-2 Pharmacodynamic Dose and Timing Regimes," Mathematics, MDPI, vol. 10(20), pages 1-12, October.
    5. Marta Baselga & Juan J. Alba & Alberto J. Schuhmacher, 2022. "The Control of Metabolic CO 2 in Public Transport as a Strategy to Reduce the Transmission of Respiratory Infectious Diseases," IJERPH, MDPI, vol. 19(11), pages 1-19, May.
    6. Lisa Cariani & Beatrice Silvia Orena & Federico Ambrogi & Simone Gambazza & Anna Maraschini & Antonella Dodaro & Massimo Oggioni & Annarosa Orlandi & Alessia Pirrone & Sara Uceda Renteria & Mara Berna, 2020. "Time Length of Negativization and Cycle Threshold Values in 182 Healthcare Workers with Covid-19 in Milan, Italy: An Observational Cohort Study," IJERPH, MDPI, vol. 17(15), pages 1-10, July.
    7. Chen, Xi & Qiu, Yun & Shi, Wei & Yu, Pei, 2022. "Key links in network interactions: Assessing route-specific travel restrictions in China during the Covid-19 pandemic," China Economic Review, Elsevier, vol. 73(C).
    8. Dapeng Li & David R. Martinez & Alexandra Schäfer & Haiyan Chen & Maggie Barr & Laura L. Sutherland & Esther Lee & Robert Parks & Dieter Mielke & Whitney Edwards & Amanda Newman & Kevin W. Bock & Mahn, 2022. "Breadth of SARS-CoV-2 neutralization and protection induced by a nanoparticle vaccine," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    9. Lorenz Schubert & Robert Strassl & Heinz Burgmann & Gabriella Dvorak & Matthias Karer & Michael Kundi & Manuel Kussmann & Heimo Lagler & Felix Lötsch & Christopher Milacek & Markus Obermueller & Zoe O, 2021. "A Longitudinal Seroprevalence Study Evaluating Infection Control and Prevention Strategies at a Large Tertiary Care Center with Low COVID-19 Incidence," IJERPH, MDPI, vol. 18(8), pages 1-10, April.
    10. Susanna Esposito & Federico Marchetti & Marcello Lanari & Fabio Caramelli & Alessandro De Fanti & Gianluca Vergine & Lorenzo Iughetti & Martina Fornaro & Agnese Suppiej & Stefano Zona & Andrea Pession, 2021. "COVID-19 Management in the Pediatric Age: Consensus Document of the COVID-19 Working Group in Paediatrics of the Emilia-Romagna Region (RE-CO-Ped), Italy," IJERPH, MDPI, vol. 18(8), pages 1-29, April.
    11. Ramon Roozendaal & Laura Solforosi & Daniel J. Stieh & Jan Serroyen & Roel Straetemans & Anna Dari & Muriel Boulton & Frank Wegmann & Sietske K. Rosendahl Huber & Joan E. M. van der Lubbe & Jenny Hend, 2021. "SARS-CoV-2 binding and neutralizing antibody levels after Ad26.COV2.S vaccination predict durable protection in rhesus macaques," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    12. Shengwei Zhu & Tong Lin & John D. Spengler & Jose Guillermo Cedeño Laurent & Jelena Srebric, 2022. "The Influence of Plastic Barriers on Aerosol Infection Risk during Airport Security Checks," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    13. Yizhen Zhang & Zhen Deng & Agus Supriyadi & Rui Song & Tao Wang, 2022. "Spatiotemporal spread characteristics and influencing factors of COVID‐19 cases: Based on big data of population migration in China," Growth and Change, Wiley Blackwell, vol. 53(4), pages 1694-1715, December.
    14. Sasha Harris-Lovett & Kara L. Nelson & Paloma Beamer & Heather N. Bischel & Aaron Bivins & Andrea Bruder & Caitlyn Butler & Todd D. Camenisch & Susan K. De Long & Smruthi Karthikeyan & David A. Larsen, 2021. "Wastewater Surveillance for SARS-CoV-2 on College Campuses: Initial Efforts, Lessons Learned, and Research Needs," IJERPH, MDPI, vol. 18(9), pages 1-20, April.
    15. Juan Liu & Fengfeng Mao & Jianhe Chen & Shuaiyao Lu & Yonghe Qi & Yinyan Sun & Linqiang Fang & Man Lung Yeung & Chunmei Liu & Guimei Yu & Guangyu Li & Ximing Liu & Yuansheng Yao & Panpan Huang & Dongx, 2023. "An IgM-like inhalable ACE2 fusion protein broadly neutralizes SARS-CoV-2 variants," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    16. Maria de Lourdes Aguiar-Oliveira & Aline Campos & Aline R. Matos & Caroline Rigotto & Adriana Sotero-Martins & Paulo F. P. Teixeira & Marilda M. Siqueira, 2020. "Wastewater-Based Epidemiology (WBE) and Viral Detection in Polluted Surface Water: A Valuable Tool for COVID-19 Surveillance—A Brief Review," IJERPH, MDPI, vol. 17(24), pages 1-19, December.
    17. Kumawat, Nitesh & Rashid, Mubasher & Srivastava, Akriti & Tripathi, Jai Prakash, 2023. "Hysteresis and Hopf bifurcation: Deciphering the dynamics of an in-host model of SARS-CoV-2 with logistic target cell growth and sigmoidal immune response," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    18. Nagel, Kai & Rakow, Christian & Müller, Sebastian A., 2021. "Realistic agent-based simulation of infection dynamics and percolation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 584(C).
    19. Rabih Ghostine & Mohamad Gharamti & Sally Hassrouny & Ibrahim Hoteit, 2021. "Mathematical Modeling of Immune Responses against SARS-CoV-2 Using an Ensemble Kalman Filter," Mathematics, MDPI, vol. 9(19), pages 1-13, September.
    20. Patrick T. Acer & Lauren M. Kelly & Andrew A. Lover & Caitlyn S. Butler, 2022. "Quantifying the Relationship between SARS-CoV-2 Wastewater Concentrations and Building-Level COVID-19 Prevalence at an Isolation Residence: A Passive Sampling Approach," IJERPH, MDPI, vol. 19(18), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:15:p:8164-:d:606931. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.