Effectiveness of Intervention Strategies on MERS-CoV Transmission Dynamics in South Korea, 2015: Simulations on the Network Based on the Real-World Contact Data
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Yunhwan Kim & Hohyung Ryu & Sunmi Lee, 2018. "Agent-Based Modeling for Super-Spreading Events: A Case Study of MERS-CoV Transmission Dynamics in the Republic of Korea," IJERPH, MDPI, vol. 15(11), pages 1-17, October.
- Alison P. Galvani & Robert M. May, 2005. "Dimensions of superspreading," Nature, Nature, vol. 438(7066), pages 293-295, November.
- Seoyun Choe & Hee-Sung Kim & Sunmi Lee, 2020. "Exploration of Superspreading Events in 2015 MERS-CoV Outbreak in Korea by Branching Process Models," IJERPH, MDPI, vol. 17(17), pages 1-14, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Das, Saikat & Bose, Indranil & Sarkar, Uttam Kumar, 2023. "Predicting the outbreak of epidemics using a network-based approach," European Journal of Operational Research, Elsevier, vol. 309(2), pages 819-831.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Seoyun Choe & Hee-Sung Kim & Sunmi Lee, 2020. "Exploration of Superspreading Events in 2015 MERS-CoV Outbreak in Korea by Branching Process Models," IJERPH, MDPI, vol. 17(17), pages 1-14, August.
- Yunhwan Kim & Hohyung Ryu & Sunmi Lee, 2018. "Agent-Based Modeling for Super-Spreading Events: A Case Study of MERS-CoV Transmission Dynamics in the Republic of Korea," IJERPH, MDPI, vol. 15(11), pages 1-17, October.
- Wang, Jia-Zeng & Peng, Wei-Hua, 2020. "Fluctuations for the outbreak prevalence of the SIR epidemics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
- Calvin Pozderac & Brian Skinner, 2021. "Superspreading of SARS-CoV-2 in the USA," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-10, March.
- Lilith K Whittles & Peter J White & Xavier Didelot, 2019. "A dynamic power-law sexual network model of gonorrhoea outbreaks," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-20, March.
- Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
- Wang, Xinyu & Jia, Danyang & Gao, Shupeng & Xia, Chengyi & Li, Xuelong & Wang, Zhen, 2020. "Vaccination behavior by coupling the epidemic spreading with the human decision under the game theory," Applied Mathematics and Computation, Elsevier, vol. 380(C).
- Jonas I Liechti & Gabriel E Leventhal & Sebastian Bonhoeffer, 2017. "Host population structure impedes reversion to drug sensitivity after discontinuation of treatment," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-19, August.
- Bote Qi & Jingwang Tan & Qingwen Zhang & Meng Cao & Xingxiong Wang & Yu Zou, 2021. "Unfixed Movement Route Model, Non-Overcrowding and Social Distancing Reduce the Spread of COVID-19 in Sporting Facilities," IJERPH, MDPI, vol. 18(15), pages 1-9, August.
- Anirban Dasgupta & Srijan Sengupta, 2022. "Scalable Estimation of Epidemic Thresholds via Node Sampling," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 321-344, June.
- Lambert, Sébastien & Gilot-Fromont, Emmanuelle & Toïgo, Carole & Marchand, Pascal & Petit, Elodie & Garin-Bastuji, Bruno & Gauthier, Dominique & Gaillard, Jean-Michel & Rossi, Sophie & Thébault, Anne, 2020. "An individual-based model to assess the spatial and individual heterogeneity of Brucella melitensis transmission in Alpine ibex," Ecological Modelling, Elsevier, vol. 425(C).
- Liu, Yu & Wang, Bai & Wu, Bin & Shang, Suiming & Zhang, Yunlei & Shi, Chuan, 2016. "Characterizing super-spreading in microblog: An epidemic-based information propagation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 202-218.
- Antonio López-Quílez, 2019. "Spatio-Temporal Analysis of Infectious Diseases," IJERPH, MDPI, vol. 16(4), pages 1-2, February.
- Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Extreme value modelling of SARS-CoV-2 community transmission using discrete Generalised Pareto distributions," TSE Working Papers 22-1323, Toulouse School of Economics (TSE), revised 09 Mar 2023.
- Francisco J. Zagmutt & Mark A. Schoenbaum & Ashley E. Hill, 2016. "The Impact of Population, Contact, and Spatial Heterogeneity on Epidemic Model Predictions," Risk Analysis, John Wiley & Sons, vol. 36(5), pages 939-953, May.
- Francesco Bellocchio & Paola Carioni & Caterina Lonati & Mario Garbelli & Francisco Martínez-Martínez & Stefano Stuard & Luca Neri, 2021. "Enhanced Sentinel Surveillance System for COVID-19 Outbreak Prediction in a Large European Dialysis Clinics Network," IJERPH, MDPI, vol. 18(18), pages 1-18, September.
- András Bóta & Lauren M. Gardner & Alireza Khani, 2017. "Identifying Critical Components of a Public Transit System for Outbreak Control," Networks and Spatial Economics, Springer, vol. 17(4), pages 1137-1159, December.
- Pelayo Martínez-Fernández & Zulima Fernández-Muñiz & Ana Cernea & Juan Luis Fernández-Martínez & Andrzej Kloczkowski, 2023. "Three Mathematical Models for COVID-19 Prediction," Mathematics, MDPI, vol. 11(3), pages 1-16, January.
More about this item
Keywords
a scale-free network model; super-spreading events; MERS-CoV transmission; contact tracing network; isolation and targeted interventions; the basic reproduction number; degree distribution in secondary cases;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:7:p:3530-:d:525965. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.