IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i7p3530-d525965.html
   My bibliography  Save this article

Effectiveness of Intervention Strategies on MERS-CoV Transmission Dynamics in South Korea, 2015: Simulations on the Network Based on the Real-World Contact Data

Author

Listed:
  • Yunhwan Kim

    (College of General Education, Kookmin University, Seoul 01160, Korea)

  • Hohyung Ryu

    (Department of Mathematics, Graduate School, Kyung Hee University, Seoul 02447, Korea)

  • Sunmi Lee

    (Department of Applied Mathematics, Kyung Hee University, Yongin 17104, Korea)

Abstract

The MERS-CoV spread in South Korea in 2015 was not only the largest outbreak of MERS-CoV in the region other than the Middle East but also a historic epidemic in South Korea. Thus, investigation of the MERS-CoV transmission dynamics, especially by agent-based modeling, would be meaningful for devising intervention strategies for novel infectious diseases. In this study, an agent-based model on MERS-CoV transmission in South Korea in 2015 was built and analyzed. The prominent characteristic of this model was that it built the simulation environment based on the real-world contact tracing network, which can be characterized as being scale-free. In the simulations, we explored the effectiveness of three possible intervention scenarios; mass quarantine, isolation, and isolation combined with acquaintance quarantine. The differences in MERS-CoV transmission dynamics by the number of links of the index case agent were examined. The simulation results indicate that isolation combined with acquaintance quarantine is more effective than others, and they also suggest the key role of super-spreaders in MERS-CoV transmission.

Suggested Citation

  • Yunhwan Kim & Hohyung Ryu & Sunmi Lee, 2021. "Effectiveness of Intervention Strategies on MERS-CoV Transmission Dynamics in South Korea, 2015: Simulations on the Network Based on the Real-World Contact Data," IJERPH, MDPI, vol. 18(7), pages 1-11, March.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:7:p:3530-:d:525965
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/7/3530/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/7/3530/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yunhwan Kim & Hohyung Ryu & Sunmi Lee, 2018. "Agent-Based Modeling for Super-Spreading Events: A Case Study of MERS-CoV Transmission Dynamics in the Republic of Korea," IJERPH, MDPI, vol. 15(11), pages 1-17, October.
    2. Alison P. Galvani & Robert M. May, 2005. "Dimensions of superspreading," Nature, Nature, vol. 438(7066), pages 293-295, November.
    3. Seoyun Choe & Hee-Sung Kim & Sunmi Lee, 2020. "Exploration of Superspreading Events in 2015 MERS-CoV Outbreak in Korea by Branching Process Models," IJERPH, MDPI, vol. 17(17), pages 1-14, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Das, Saikat & Bose, Indranil & Sarkar, Uttam Kumar, 2023. "Predicting the outbreak of epidemics using a network-based approach," European Journal of Operational Research, Elsevier, vol. 309(2), pages 819-831.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seoyun Choe & Hee-Sung Kim & Sunmi Lee, 2020. "Exploration of Superspreading Events in 2015 MERS-CoV Outbreak in Korea by Branching Process Models," IJERPH, MDPI, vol. 17(17), pages 1-14, August.
    2. Yunhwan Kim & Hohyung Ryu & Sunmi Lee, 2018. "Agent-Based Modeling for Super-Spreading Events: A Case Study of MERS-CoV Transmission Dynamics in the Republic of Korea," IJERPH, MDPI, vol. 15(11), pages 1-17, October.
    3. Wang, Jia-Zeng & Peng, Wei-Hua, 2020. "Fluctuations for the outbreak prevalence of the SIR epidemics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    4. Calvin Pozderac & Brian Skinner, 2021. "Superspreading of SARS-CoV-2 in the USA," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-10, March.
    5. Lilith K Whittles & Peter J White & Xavier Didelot, 2019. "A dynamic power-law sexual network model of gonorrhoea outbreaks," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-20, March.
    6. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    7. Wang, Xinyu & Jia, Danyang & Gao, Shupeng & Xia, Chengyi & Li, Xuelong & Wang, Zhen, 2020. "Vaccination behavior by coupling the epidemic spreading with the human decision under the game theory," Applied Mathematics and Computation, Elsevier, vol. 380(C).
    8. Jonas I Liechti & Gabriel E Leventhal & Sebastian Bonhoeffer, 2017. "Host population structure impedes reversion to drug sensitivity after discontinuation of treatment," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-19, August.
    9. Bote Qi & Jingwang Tan & Qingwen Zhang & Meng Cao & Xingxiong Wang & Yu Zou, 2021. "Unfixed Movement Route Model, Non-Overcrowding and Social Distancing Reduce the Spread of COVID-19 in Sporting Facilities," IJERPH, MDPI, vol. 18(15), pages 1-9, August.
    10. Anirban Dasgupta & Srijan Sengupta, 2022. "Scalable Estimation of Epidemic Thresholds via Node Sampling," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(1), pages 321-344, June.
    11. Lambert, Sébastien & Gilot-Fromont, Emmanuelle & Toïgo, Carole & Marchand, Pascal & Petit, Elodie & Garin-Bastuji, Bruno & Gauthier, Dominique & Gaillard, Jean-Michel & Rossi, Sophie & Thébault, Anne, 2020. "An individual-based model to assess the spatial and individual heterogeneity of Brucella melitensis transmission in Alpine ibex," Ecological Modelling, Elsevier, vol. 425(C).
    12. Liu, Yu & Wang, Bai & Wu, Bin & Shang, Suiming & Zhang, Yunlei & Shi, Chuan, 2016. "Characterizing super-spreading in microblog: An epidemic-based information propagation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 202-218.
    13. Antonio López-Quílez, 2019. "Spatio-Temporal Analysis of Infectious Diseases," IJERPH, MDPI, vol. 16(4), pages 1-2, February.
    14. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Extreme value modelling of SARS-CoV-2 community transmission using discrete Generalised Pareto distributions," TSE Working Papers 22-1323, Toulouse School of Economics (TSE), revised 09 Mar 2023.
    15. Francisco J. Zagmutt & Mark A. Schoenbaum & Ashley E. Hill, 2016. "The Impact of Population, Contact, and Spatial Heterogeneity on Epidemic Model Predictions," Risk Analysis, John Wiley & Sons, vol. 36(5), pages 939-953, May.
    16. Francesco Bellocchio & Paola Carioni & Caterina Lonati & Mario Garbelli & Francisco Martínez-Martínez & Stefano Stuard & Luca Neri, 2021. "Enhanced Sentinel Surveillance System for COVID-19 Outbreak Prediction in a Large European Dialysis Clinics Network," IJERPH, MDPI, vol. 18(18), pages 1-18, September.
    17. András Bóta & Lauren M. Gardner & Alireza Khani, 2017. "Identifying Critical Components of a Public Transit System for Outbreak Control," Networks and Spatial Economics, Springer, vol. 17(4), pages 1137-1159, December.
    18. Pelayo Martínez-Fernández & Zulima Fernández-Muñiz & Ana Cernea & Juan Luis Fernández-Martínez & Andrzej Kloczkowski, 2023. "Three Mathematical Models for COVID-19 Prediction," Mathematics, MDPI, vol. 11(3), pages 1-16, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:7:p:3530-:d:525965. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.