IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006748.html
   My bibliography  Save this article

A dynamic power-law sexual network model of gonorrhoea outbreaks

Author

Listed:
  • Lilith K Whittles
  • Peter J White
  • Xavier Didelot

Abstract

Human networks of sexual contacts are dynamic by nature, with partnerships forming and breaking continuously over time. Sexual behaviours are also highly heterogeneous, so that the number of partners reported by individuals over a given period of time is typically distributed as a power-law. Both the dynamism and heterogeneity of sexual partnerships are likely to have an effect in the patterns of spread of sexually transmitted diseases. To represent these two fundamental properties of sexual networks, we developed a stochastic process of dynamic partnership formation and dissolution, which results in power-law numbers of partners over time. Model parameters can be set to produce realistic conditions in terms of the exponent of the power-law distribution, of the number of individuals without relationships and of the average duration of relationships. Using an outbreak of antibiotic resistant gonorrhoea amongst men have sex with men as a case study, we show that our realistic dynamic network exhibits different properties compared to the frequently used static networks or homogeneous mixing models. We also consider an approximation to our dynamic network model in terms of a much simpler branching process. We estimate the parameters of the generation time distribution and offspring distribution which can be used for example in the context of outbreak reconstruction based on genomic data. Finally, we investigate the impact of a range of interventions against gonorrhoea, including increased condom use, more frequent screening and immunisation, concluding that the latter shows great promise to reduce the burden of gonorrhoea, even if the vaccine was only partially effective or applied to only a random subset of the population.Author summary: The formation and dissolution of sexual relationships in human populations constitute an ever-changing network of links between individuals through which sexually transmitted diseases spread. To study this phenomenon, we developed a dynamic simulation algorithm that can reproduce the same distribution of sexual contacts as observed in real populations. We applied our algorithm to the study of gonorrhoea outbreaks and showed that it results in significantly different patterns of transmission compared to models where the sexual network does not change or is ignored. We show how our model can be incorporated into existing algorithms of outbreak investigation based on genomic sequencing data. We also apply our model to the evaluation of a range of interventions frequently proposed to limit the spread of gonorrhoea transmission, and in particular we quantify the potential of vaccination strategies.

Suggested Citation

  • Lilith K Whittles & Peter J White & Xavier Didelot, 2019. "A dynamic power-law sexual network model of gonorrhoea outbreaks," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-20, March.
  • Handle: RePEc:plo:pcbi00:1006748
    DOI: 10.1371/journal.pcbi.1006748
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006748
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006748&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006748?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robinson, Katy & Cohen, Ted & Colijn, Caroline, 2012. "The dynamics of sexual contact networks: Effects on disease spread and control," Theoretical Population Biology, Elsevier, vol. 81(2), pages 89-96.
    2. Stephanie M Fingerhuth & Sebastian Bonhoeffer & Nicola Low & Christian L Althaus, 2016. "Antibiotic-Resistant Neisseria gonorrhoeae Spread Faster with More Treatment, Not More Sexual Partners," PLOS Pathogens, Public Library of Science, vol. 12(5), pages 1-15, May.
    3. J. O. Lloyd-Smith & S. J. Schreiber & P. E. Kopp & W. M. Getz, 2005. "Superspreading and the effect of individual variation on disease emergence," Nature, Nature, vol. 438(7066), pages 355-359, November.
    4. Alison P. Galvani & Robert M. May, 2005. "Dimensions of superspreading," Nature, Nature, vol. 438(7066), pages 293-295, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin Steinegger & Iacopo Iacopini & Andreia Sofia Teixeira & Alberto Bracci & Pau Casanova-Ferrer & Alberto Antonioni & Eugenio Valdano, 2022. "Non-selective distribution of infectious disease prevention may outperform risk-based targeting," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Samuel P. C. Brand & Massimo Cavallaro & Fergus Cumming & Charlie Turner & Isaac Florence & Paula Blomquist & Joe Hilton & Laura M. Guzman-Rincon & Thomas House & D. James Nokes & Matt J. Keeling, 2023. "The role of vaccination and public awareness in forecasts of Mpox incidence in the United Kingdom," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jonas I Liechti & Gabriel E Leventhal & Sebastian Bonhoeffer, 2017. "Host population structure impedes reversion to drug sensitivity after discontinuation of treatment," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-19, August.
    2. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    3. Yunhwan Kim & Hohyung Ryu & Sunmi Lee, 2018. "Agent-Based Modeling for Super-Spreading Events: A Case Study of MERS-CoV Transmission Dynamics in the Republic of Korea," IJERPH, MDPI, vol. 15(11), pages 1-17, October.
    4. Wang, Jia-Zeng & Peng, Wei-Hua, 2020. "Fluctuations for the outbreak prevalence of the SIR epidemics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    5. Calvin Pozderac & Brian Skinner, 2021. "Superspreading of SARS-CoV-2 in the USA," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-10, March.
    6. Seoyun Choe & Hee-Sung Kim & Sunmi Lee, 2020. "Exploration of Superspreading Events in 2015 MERS-CoV Outbreak in Korea by Branching Process Models," IJERPH, MDPI, vol. 17(17), pages 1-14, August.
    7. Lambert, Sébastien & Gilot-Fromont, Emmanuelle & Toïgo, Carole & Marchand, Pascal & Petit, Elodie & Garin-Bastuji, Bruno & Gauthier, Dominique & Gaillard, Jean-Michel & Rossi, Sophie & Thébault, Anne, 2020. "An individual-based model to assess the spatial and individual heterogeneity of Brucella melitensis transmission in Alpine ibex," Ecological Modelling, Elsevier, vol. 425(C).
    8. Liu, Yu & Wang, Bai & Wu, Bin & Shang, Suiming & Zhang, Yunlei & Shi, Chuan, 2016. "Characterizing super-spreading in microblog: An epidemic-based information propagation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 202-218.
    9. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Extreme value modelling of SARS-CoV-2 community transmission using discrete Generalised Pareto distributions," TSE Working Papers 22-1323, Toulouse School of Economics (TSE), revised 09 Mar 2023.
    10. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    11. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    12. Luc E. Coffeng & Sake J. de Vlas, 2022. "Predicting epidemics and the impact of interventions in heterogeneous settings: Standard SEIR models are too pessimistic," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 28-35, November.
    13. Joseph B. Bak-Coleman & Ian Kennedy & Morgan Wack & Andrew Beers & Joseph S. Schafer & Emma S. Spiro & Kate Starbird & Jevin D. West, 2022. "Combining interventions to reduce the spread of viral misinformation," Nature Human Behaviour, Nature, vol. 6(10), pages 1372-1380, October.
    14. Kris V. Parag & Robin N. Thompson & Christl A. Donnelly, 2022. "Are epidemic growth rates more informative than reproduction numbers?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 5-15, November.
    15. Thomas Ash & Antonio M. Bento & Daniel Kaffine & Akhil Rao & Ana I. Bento, 2022. "Disease-economy trade-offs under alternative epidemic control strategies," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    16. Maarten Jan Wensink & Linda Juel Ahrenfeldt & Sören Möller, 2020. "Variability Matters," IJERPH, MDPI, vol. 18(1), pages 1-8, December.
    17. Lingcai Kong & Jinfeng Wang & Weiguo Han & Zhidong Cao, 2016. "Modeling Heterogeneity in Direct Infectious Disease Transmission in a Compartmental Model," IJERPH, MDPI, vol. 13(3), pages 1-13, February.
    18. Carolyn Ingram & Vicky Downey & Mark Roe & Yanbing Chen & Mary Archibald & Kadri-Ann Kallas & Jaspal Kumar & Peter Naughton & Cyril Onwuelazu Uteh & Alejandro Rojas-Chaves & Shibu Shrestha & Shiraz Sy, 2021. "COVID-19 Prevention and Control Measures in Workplace Settings: A Rapid Review and Meta-Analysis," IJERPH, MDPI, vol. 18(15), pages 1-26, July.
    19. Wayne M. Getz & Jean-Paul Gonzalez & Richard Salter & James Bangura & Colin Carlson & Moinya Coomber & Eric Dougherty & David Kargbo & Nathan D. Wolfe & Nadia Wauquier, 2015. "Tactics and Strategies for Managing Ebola Outbreaks and the Salience of Immunization," Post-Print hal-01214432, HAL.
    20. Wang, Xinyu & Jia, Danyang & Gao, Shupeng & Xia, Chengyi & Li, Xuelong & Wang, Zhen, 2020. "Vaccination behavior by coupling the epidemic spreading with the human decision under the game theory," Applied Mathematics and Computation, Elsevier, vol. 380(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006748. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.