IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i17p6137-d403138.html
   My bibliography  Save this article

Exploration of Superspreading Events in 2015 MERS-CoV Outbreak in Korea by Branching Process Models

Author

Listed:
  • Seoyun Choe

    (Department of Mathematics, University of Central Florida, Orlando, FL 32816, USA
    These authors contributed equally to this work.)

  • Hee-Sung Kim

    (Department of Internal Medicine, Chungbuk National University Hospital, Chungbuk National University College of Medicine, Cheongju 28644, Korea
    These authors contributed equally to this work.)

  • Sunmi Lee

    (Department of Applied Mathematics, Kyung Hee University, Yongin 17104, Korea)

Abstract

South Korea has learned a valuable lesson from the Middle East respiratory syndrome (MERS) coronavirus outbreak in 2015. The 2015 MERS-CoV outbreak in Korea was the largest outbreak outside the Middle Eastern countries and was characterized as a nosocomial infection and a superspreading event. To assess the characteristics of a super spreading event, we specifically analyze the behaviors and epidemiological features of superspreaders. Furthermore, we employ a branching process model to understand a significantly high level of heterogeneity in generating secondary cases. The existing model of the branching process (Lloyd-Smith model) is used to incorporate individual heterogeneity into the model, and the key epidemiological components (the reproduction number and the dispersive parameter) are estimated through the empirical transmission tree of the MERS-CoV data. We also investigate the impact of control intervention strategies on the MERS-CoV dynamics of the Lloyd-Smith model. Our results highlight the roles of superspreaders in a high level of heterogeneity. This indicates that the conditions within hospitals as well as multiple hospital visits were the crucial factors for superspreading events of the 2015 MERS-CoV outbreak.

Suggested Citation

  • Seoyun Choe & Hee-Sung Kim & Sunmi Lee, 2020. "Exploration of Superspreading Events in 2015 MERS-CoV Outbreak in Korea by Branching Process Models," IJERPH, MDPI, vol. 17(17), pages 1-14, August.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:17:p:6137-:d:403138
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/17/6137/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/17/6137/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhi-Qiang Xia & Juan Zhang & Ya-Kui Xue & Gui-Quan Sun & Zhen Jin, 2015. "Modeling the Transmission of Middle East Respirator Syndrome Corona Virus in the Republic of Korea," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-13, December.
    2. J. O. Lloyd-Smith & S. J. Schreiber & P. E. Kopp & W. M. Getz, 2005. "Superspreading and the effect of individual variation on disease emergence," Nature, Nature, vol. 438(7066), pages 355-359, November.
    3. Yunhwan Kim & Hohyung Ryu & Sunmi Lee, 2018. "Agent-Based Modeling for Super-Spreading Events: A Case Study of MERS-CoV Transmission Dynamics in the Republic of Korea," IJERPH, MDPI, vol. 15(11), pages 1-17, October.
    4. Alison P. Galvani & Robert M. May, 2005. "Dimensions of superspreading," Nature, Nature, vol. 438(7066), pages 293-295, November.
    5. Krishna Saha & Sudhir Paul, 2005. "Bias-Corrected Maximum Likelihood Estimator of the Negative Binomial Dispersion Parameter," Biometrics, The International Biometric Society, vol. 61(1), pages 179-185, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunhwan Kim & Hohyung Ryu & Sunmi Lee, 2021. "Effectiveness of Intervention Strategies on MERS-CoV Transmission Dynamics in South Korea, 2015: Simulations on the Network Based on the Real-World Contact Data," IJERPH, MDPI, vol. 18(7), pages 1-11, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    2. Jonas I Liechti & Gabriel E Leventhal & Sebastian Bonhoeffer, 2017. "Host population structure impedes reversion to drug sensitivity after discontinuation of treatment," PLOS Computational Biology, Public Library of Science, vol. 13(8), pages 1-19, August.
    3. Yunhwan Kim & Hohyung Ryu & Sunmi Lee, 2018. "Agent-Based Modeling for Super-Spreading Events: A Case Study of MERS-CoV Transmission Dynamics in the Republic of Korea," IJERPH, MDPI, vol. 15(11), pages 1-17, October.
    4. Wang, Jia-Zeng & Peng, Wei-Hua, 2020. "Fluctuations for the outbreak prevalence of the SIR epidemics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 548(C).
    5. Yunhwan Kim & Hohyung Ryu & Sunmi Lee, 2021. "Effectiveness of Intervention Strategies on MERS-CoV Transmission Dynamics in South Korea, 2015: Simulations on the Network Based on the Real-World Contact Data," IJERPH, MDPI, vol. 18(7), pages 1-11, March.
    6. Calvin Pozderac & Brian Skinner, 2021. "Superspreading of SARS-CoV-2 in the USA," PLOS ONE, Public Library of Science, vol. 16(3), pages 1-10, March.
    7. Lilith K Whittles & Peter J White & Xavier Didelot, 2019. "A dynamic power-law sexual network model of gonorrhoea outbreaks," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-20, March.
    8. Lambert, Sébastien & Gilot-Fromont, Emmanuelle & Toïgo, Carole & Marchand, Pascal & Petit, Elodie & Garin-Bastuji, Bruno & Gauthier, Dominique & Gaillard, Jean-Michel & Rossi, Sophie & Thébault, Anne, 2020. "An individual-based model to assess the spatial and individual heterogeneity of Brucella melitensis transmission in Alpine ibex," Ecological Modelling, Elsevier, vol. 425(C).
    9. Liu, Yu & Wang, Bai & Wu, Bin & Shang, Suiming & Zhang, Yunlei & Shi, Chuan, 2016. "Characterizing super-spreading in microblog: An epidemic-based information propagation model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 202-218.
    10. Daouia, Abdelaati & Stupfler, Gilles & Usseglio-Carleve, Antoine, 2022. "Extreme value modelling of SARS-CoV-2 community transmission using discrete Generalised Pareto distributions," TSE Working Papers 22-1323, Toulouse School of Economics (TSE), revised 09 Mar 2023.
    11. Tardy, Olivia & Lenglos, Christophe & Lai, Sandra & Berteaux, Dominique & Leighton, Patrick A., 2023. "Rabies transmission in the Arctic: An agent-based model reveals the effects of broad-scale movement strategies on contact risk between Arctic foxes," Ecological Modelling, Elsevier, vol. 476(C).
    12. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    13. Luc E. Coffeng & Sake J. de Vlas, 2022. "Predicting epidemics and the impact of interventions in heterogeneous settings: Standard SEIR models are too pessimistic," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 28-35, November.
    14. Joseph B. Bak-Coleman & Ian Kennedy & Morgan Wack & Andrew Beers & Joseph S. Schafer & Emma S. Spiro & Kate Starbird & Jevin D. West, 2022. "Combining interventions to reduce the spread of viral misinformation," Nature Human Behaviour, Nature, vol. 6(10), pages 1372-1380, October.
    15. Hussain, Shah & Tunç, Osman & Rahman, Ghaus ur & Khan, Hasib & Nadia, Elissa, 2023. "Mathematical analysis of stochastic epidemic model of MERS-corona & application of ergodic theory," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 207(C), pages 130-150.
    16. Kris V. Parag & Robin N. Thompson & Christl A. Donnelly, 2022. "Are epidemic growth rates more informative than reproduction numbers?," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(S1), pages 5-15, November.
    17. Thomas Ash & Antonio M. Bento & Daniel Kaffine & Akhil Rao & Ana I. Bento, 2022. "Disease-economy trade-offs under alternative epidemic control strategies," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    18. Maarten Jan Wensink & Linda Juel Ahrenfeldt & Sören Möller, 2020. "Variability Matters," IJERPH, MDPI, vol. 18(1), pages 1-8, December.
    19. Lingcai Kong & Jinfeng Wang & Weiguo Han & Zhidong Cao, 2016. "Modeling Heterogeneity in Direct Infectious Disease Transmission in a Compartmental Model," IJERPH, MDPI, vol. 13(3), pages 1-13, February.
    20. Carolyn Ingram & Vicky Downey & Mark Roe & Yanbing Chen & Mary Archibald & Kadri-Ann Kallas & Jaspal Kumar & Peter Naughton & Cyril Onwuelazu Uteh & Alejandro Rojas-Chaves & Shibu Shrestha & Shiraz Sy, 2021. "COVID-19 Prevention and Control Measures in Workplace Settings: A Rapid Review and Meta-Analysis," IJERPH, MDPI, vol. 18(15), pages 1-26, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:17:p:6137-:d:403138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.