IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v18y2021i4p1833-d498998.html
   My bibliography  Save this article

Prior Elicitation for Use in Clinical Trial Design and Analysis: A Literature Review

Author

Listed:
  • Danila Azzolina

    (Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
    Department of Traslational Medicine, University of Eastern Piedmont, 28100 Novara, Italy)

  • Paola Berchialla

    (Department of Clinical and Biological Science, University of Turin, 10124 Turin, Italy)

  • Dario Gregori

    (Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy)

  • Ileana Baldi

    (Unit of Biostatistics, Epidemiology and Public Health, Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy)

Abstract

Bayesian inference is increasingly popular in clinical trial design and analysis. The subjective knowledge derived from an expert elicitation procedure may be useful to define a prior probability distribution when no or limited data is available. This work aims to investigate the state-of-the-art Bayesian prior elicitation methods with a focus on clinical trial research. A literature search on the Current Index to Statistics (CIS), PubMed, and Web of Science (WOS) databases, considering “prior elicitation” as a search string, was run on 1 November 2020. Summary statistics and trend of publications over time were reported. Finally, a Latent Dirichlet Allocation (LDA) model was developed to recognise latent topics in the pertinent papers retrieved. A total of 460 documents pertinent to the Bayesian prior elicitation were identified. Of these, 213 (45.4%) were published in the “Probability and Statistics” area. A total of 42 articles pertain to clinical trial and the majority of them (81%) reports parametric techniques as elicitation method. The last decade has seen an increased interest in prior elicitation and the gap between theory and application getting narrower and narrower. Given the promising flexibility of non-parametric approaches to the experts’ elicitation, more efforts are needed to ensure their diffusion also in applied settings.

Suggested Citation

  • Danila Azzolina & Paola Berchialla & Dario Gregori & Ileana Baldi, 2021. "Prior Elicitation for Use in Clinical Trial Design and Analysis: A Literature Review," IJERPH, MDPI, vol. 18(4), pages 1-21, February.
  • Handle: RePEc:gam:jijerp:v:18:y:2021:i:4:p:1833-:d:498998
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/18/4/1833/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/18/4/1833/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grün, Bettina & Hornik, Kurt, 2011. "topicmodels: An R Package for Fitting Topic Models," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i13).
    2. Ying Kuen Cheung, 2002. "On the Use of Nonparametric Curves in Phase I Trials with Low Toxicity Tolerance," Biometrics, The International Biometric Society, vol. 58(1), pages 237-240, March.
    3. Bekele, B. Nebiyou & Thall, Peter F., 2004. "Dose-Finding Based on Multiple Toxicities in a Soft Tissue Sarcoma Trial," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 26-35, January.
    4. Garthwaite, Paul H. & Kadane, Joseph B. & O'Hagan, Anthony, 2005. "Statistical Methods for Eliciting Probability Distributions," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 680-701, June.
    5. Ali E. Abbas & David V. Budescu & Hsiu-Ting Yu & Ryan Haggerty, 2008. "A Comparison of Two Probability Encoding Methods: Fixed Probability vs. Fixed Variable Values," Decision Analysis, INFORMS, vol. 5(4), pages 190-202, December.
    6. Ruitao Lin & Peter F. Thall & Ying Yuan, 2020. "An adaptive trial design to optimize dose‐schedule regimes with delayed outcomes," Biometrics, The International Biometric Society, vol. 76(1), pages 304-315, March.
    7. Rita Esther Zapata-V�zquez & Anthony O'Hagan & Leonardo Soares Bastos, 2014. "Eliciting expert judgements about a set of proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(9), pages 1919-1933, September.
    8. De Santis, Fulvio, 2006. "Power Priors and Their Use in Clinical Trials," The American Statistician, American Statistical Association, vol. 60, pages 122-129, May.
    9. Jeremy E. Oakley & Anthony O'Hagan, 2007. "Uncertainty in prior elicitations: a nonparametric approach," Biometrika, Biometrika Trust, vol. 94(2), pages 427-441.
    10. Matthew W. Wheeler & Walter W. Piegorsch & Albert John Bailer, 2019. "Quantal Risk Assessment Database: A Database for Exploring Patterns in Quantal Dose‐Response Data in Risk Assessment and its Application to Develop Priors for Bayesian Dose‐Response Analysis," Risk Analysis, John Wiley & Sons, vol. 39(3), pages 616-629, March.
    11. Leonhard Held & Rafael Sauter, 2017. "Adaptive prior weighting in generalized regression," Biometrics, The International Biometric Society, vol. 73(1), pages 242-251, March.
    12. Rebecca M. Turner & David J. Spiegelhalter & Gordon C. S. Smith & Simon G. Thompson, 2009. "Bias modelling in evidence synthesis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 21-47, January.
    13. Manuel Wiesenfarth & Silvia Calderazzo, 2020. "Quantification of prior impact in terms of effective current sample size," Biometrics, The International Biometric Society, vol. 76(1), pages 326-336, March.
    14. Bornkamp, Björn & Ickstadt, Katja, 2009. "A Note on B-Splines for Semiparametric Elicitation," The American Statistician, American Statistical Association, vol. 63(4), pages 373-377.
    15. Donald L. Keefer, 1994. "Certainty Equivalents for Three-Point Discrete-Distribution Approximations," Management Science, INFORMS, vol. 40(6), pages 760-773, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiayuan Dong & Jiankan Liao & Xun Huan & Daniel Cooper, 2023. "Expert elicitation and data noise learning for material flow analysis using Bayesian inference," Journal of Industrial Ecology, Yale University, vol. 27(4), pages 1105-1122, August.
    2. Danila Azzolina & Giulia Lorenzoni & Silvia Bressan & Liviana Da Dalt & Ileana Baldi & Dario Gregori, 2021. "Handling Poor Accrual in Pediatric Trials: A Simulation Study Using a Bayesian Approach," IJERPH, MDPI, vol. 18(4), pages 1-16, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danila Azzolina & Paola Berchialla & Silvia Bressan & Liviana Da Dalt & Dario Gregori & Ileana Baldi, 2022. "A Bayesian Sample Size Estimation Procedure Based on a B-Splines Semiparametric Elicitation Method," IJERPH, MDPI, vol. 19(21), pages 1-15, October.
    2. Saurabh Bansal & Genaro J. Gutierrez & Mahesh Nagarajan, 2021. "Theory-Driven Practical Approach to Integrate R&D and Production Planning for Portfolio Management in Agribusiness," Interfaces, INFORMS, vol. 51(5), pages 332-346, September.
    3. Jiayuan Dong & Jiankan Liao & Xun Huan & Daniel Cooper, 2023. "Expert elicitation and data noise learning for material flow analysis using Bayesian inference," Journal of Industrial Ecology, Yale University, vol. 27(4), pages 1105-1122, August.
    4. Lichtendahl Jr., Kenneth C., 2009. "Random quantiles of the Dirichlet process," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 501-507, February.
    5. Werner, Christoph & Bedford, Tim & Cooke, Roger M. & Hanea, Anca M. & Morales-Nápoles, Oswaldo, 2017. "Expert judgement for dependence in probabilistic modelling: A systematic literature review and future research directions," European Journal of Operational Research, Elsevier, vol. 258(3), pages 801-819.
    6. Nicolas Bousquet, 2010. "Eliciting vague but proper maximal entropy priors in Bayesian experiments," Statistical Papers, Springer, vol. 51(3), pages 613-628, September.
    7. Michael D. Teter & Johannes O. Royset & Alexandra M. Newman, 2019. "Modeling uncertainty of expert elicitation for use in risk-based optimization," Annals of Operations Research, Springer, vol. 280(1), pages 189-210, September.
    8. Julia R. Falconer & Eibe Frank & Devon L. L. Polaschek & Chaitanya Joshi, 2022. "Methods for Eliciting Informative Prior Distributions: A Critical Review," Decision Analysis, INFORMS, vol. 19(3), pages 189-204, September.
    9. Fadlalla G. Elfadaly & Paul H. Garthwaite, 2020. "On quantifying expert opinion about multinomial models that contain covariates," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 959-981, June.
    10. Claire Copeland & Britta Turner & Gareth Powells & Kevin Wilson, 2022. "In Search of Complementarity: Insights from an Exercise in Quantifying Qualitative Energy Futures," Energies, MDPI, vol. 15(15), pages 1-21, July.
    11. Robert K. Hammond & J. Eric Bickel, 2013. "Reexamining Discrete Approximations to Continuous Distributions," Decision Analysis, INFORMS, vol. 10(1), pages 6-25, March.
    12. Maksym Polyakov & Morteza Chalak & Md. Sayed Iftekhar & Ram Pandit & Sorada Tapsuwan & Fan Zhang & Chunbo Ma, 2018. "Authorship, Collaboration, Topics, and Research Gaps in Environmental and Resource Economics 1991–2015," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(1), pages 217-239, September.
    13. Miller, Joshua Benjamin & Sanjurjo, Adam, 2018. "How Experience Confirms the Gambler's Fallacy when Sample Size is Neglected," OSF Preprints m5xsk, Center for Open Science.
    14. Martin Baumgaertner & Johannes Zahner, 2021. "Whatever it takes to understand a central banker - Embedding their words using neural networks," MAGKS Papers on Economics 202130, Philipps-Universität Marburg, Faculty of Business Administration and Economics, Department of Economics (Volkswirtschaftliche Abteilung).
    15. Dai, Min & Jia, Yanwei & Kou, Steven, 2021. "The wisdom of the crowd and prediction markets," Journal of Econometrics, Elsevier, vol. 222(1), pages 561-578.
    16. A Zuashkiani & D Banjevic & A K S Jardine, 2009. "Estimating parameters of proportional hazards model based on expert knowledge and statistical data," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1621-1636, December.
    17. Daoud, Adel & Kohl, Sebastian, 2016. "How much do sociologists write about economic topics? Using big data to test some conventional views in economic sociology, 1890 to 2014," MPIfG Discussion Paper 16/7, Max Planck Institute for the Study of Societies.
    18. Cardinale, Roberto & Cardinale, Ivano & Zupic, Ivan, 2024. "The EU's vulnerability to gas price and supply shocks: The role of mismatches between policy beliefs and changing international gas markets," Energy Economics, Elsevier, vol. 131(C).
    19. Shr-Wei Kao & Pin Luarn, 2020. "Topic Modeling Analysis of Social Enterprises: Twitter Evidence," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    20. McCandless Lawrence C., 2012. "Meta-Analysis of Observational Studies with Unmeasured Confounders," The International Journal of Biostatistics, De Gruyter, vol. 8(2), pages 1-31, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:18:y:2021:i:4:p:1833-:d:498998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.