IDEAS home Printed from https://ideas.repec.org/a/oup/biomet/v94y2007i2p427-441.html
   My bibliography  Save this article

Uncertainty in prior elicitations: a nonparametric approach

Author

Listed:
  • Jeremy E. Oakley
  • Anthony O'Hagan

Abstract

A key task in the elicitation of expert knowledge is to construct a distribution from the finite, and usually small, number of statements that have been elicited from the expert. These statements typically specify some quantiles or moments of the distribution. Such statements are not enough to identify the expert's probability distribution uniquely, and the usual approach is to fit some member of a convenient parametric family. There are two clear deficiencies in this solution. First, the expert's beliefs are forced to fit the parametric family. Secondly, no account is then taken of the many other possible distributions that might have fitted the elicited statements equally well. We present a nonparametric approach which tackles both of these deficiencies. We also consider the issue of the imprecision in the elicited probability judgements. Copyright 2007, Oxford University Press.

Suggested Citation

  • Jeremy E. Oakley & Anthony O'Hagan, 2007. "Uncertainty in prior elicitations: a nonparametric approach," Biometrika, Biometrika Trust, vol. 94(2), pages 427-441.
  • Handle: RePEc:oup:biomet:v:94:y:2007:i:2:p:427-441
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1093/biomet/asm031
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michael D. Teter & Johannes O. Royset & Alexandra M. Newman, 2019. "Modeling uncertainty of expert elicitation for use in risk-based optimization," Annals of Operations Research, Springer, vol. 280(1), pages 189-210, September.
    2. Martin Forster & Emanuela Randon, 2020. "Epidemic policy under uncertainty and information," Discussion Papers 20/05, Department of Economics, University of York.
    3. Danila Azzolina & Paola Berchialla & Silvia Bressan & Liviana Da Dalt & Dario Gregori & Ileana Baldi, 2022. "A Bayesian Sample Size Estimation Procedure Based on a B-Splines Semiparametric Elicitation Method," IJERPH, MDPI, vol. 19(21), pages 1-15, October.
    4. Danila Azzolina & Paola Berchialla & Dario Gregori & Ileana Baldi, 2021. "Prior Elicitation for Use in Clinical Trial Design and Analysis: A Literature Review," IJERPH, MDPI, vol. 18(4), pages 1-21, February.
    5. Nicolas Bousquet, 2010. "Eliciting vague but proper maximal entropy priors in Bayesian experiments," Statistical Papers, Springer, vol. 51(3), pages 613-628, September.
    6. Lichtendahl Jr., Kenneth C., 2009. "Random quantiles of the Dirichlet process," Statistics & Probability Letters, Elsevier, vol. 79(4), pages 501-507, February.
    7. Rebecca M. Turner & David J. Spiegelhalter & Gordon C. S. Smith & Simon G. Thompson, 2009. "Bias modelling in evidence synthesis," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 172(1), pages 21-47, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:oup:biomet:v:94:y:2007:i:2:p:427-441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Oxford University Press (email available below). General contact details of provider: https://academic.oup.com/biomet .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.