IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v41y2014i9p1919-1933.html
   My bibliography  Save this article

Eliciting expert judgements about a set of proportions

Author

Listed:
  • Rita Esther Zapata-V�zquez
  • Anthony O'Hagan
  • Leonardo Soares Bastos

Abstract

Eliciting expert knowledge about several uncertain quantities is a complex task when those quantities exhibit associations. A well-known example of such a problem is eliciting knowledge about a set of uncertain proportions which must sum to 1. The usual approach is to assume that the expert's knowledge can be adequately represented by a Dirichlet distribution, since this is by far the simplest multivariate distribution that is appropriate for such a set of proportions. It is also the most convenient, particularly when the expert's prior knowledge is to be combined with a multinomial sample since then the Dirichlet is the conjugate prior family. Several methods have been described in the literature for eliciting beliefs in the form of a Dirichlet distribution, which typically involve eliciting from the expert enough judgements to identify uniquely the Dirichlet hyperparameters. We describe here a new method which employs the device of over-fitting, i.e. eliciting more than the minimal number of judgements, in order to (a) produce a more carefully considered Dirichlet distribution and (b) ensure that the Dirichlet distribution is indeed a reasonable fit to the expert's knowledge. The method has been implemented in a software extension of the Sheffield elicitation framework (SHELF) to facilitate the multivariate elicitation process.

Suggested Citation

  • Rita Esther Zapata-V�zquez & Anthony O'Hagan & Leonardo Soares Bastos, 2014. "Eliciting expert judgements about a set of proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(9), pages 1919-1933, September.
  • Handle: RePEc:taf:japsta:v:41:y:2014:i:9:p:1919-1933
    DOI: 10.1080/02664763.2014.898131
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2014.898131
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2014.898131?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Danila Azzolina & Paola Berchialla & Dario Gregori & Ileana Baldi, 2021. "Prior Elicitation for Use in Clinical Trial Design and Analysis: A Literature Review," IJERPH, MDPI, vol. 18(4), pages 1-21, February.
    2. Saurabh Bansal & Genaro J. Gutierrez & Mahesh Nagarajan, 2021. "Theory-Driven Practical Approach to Integrate R&D and Production Planning for Portfolio Management in Agribusiness," Interfaces, INFORMS, vol. 51(5), pages 332-346, September.
    3. Werner, Christoph & Bedford, Tim & Cooke, Roger M. & Hanea, Anca M. & Morales-Nápoles, Oswaldo, 2017. "Expert judgement for dependence in probabilistic modelling: A systematic literature review and future research directions," European Journal of Operational Research, Elsevier, vol. 258(3), pages 801-819.
    4. Jiayuan Dong & Jiankan Liao & Xun Huan & Daniel Cooper, 2023. "Expert elicitation and data noise learning for material flow analysis using Bayesian inference," Journal of Industrial Ecology, Yale University, vol. 27(4), pages 1105-1122, August.
    5. Fadlalla G. Elfadaly & Paul H. Garthwaite, 2020. "On quantifying expert opinion about multinomial models that contain covariates," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 183(3), pages 959-981, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:41:y:2014:i:9:p:1919-1933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.