IDEAS home Printed from https://ideas.repec.org/a/inm/orinte/v51y2021i5p332-346.html
   My bibliography  Save this article

Theory-Driven Practical Approach to Integrate R&D and Production Planning for Portfolio Management in Agribusiness

Author

Listed:
  • Saurabh Bansal

    (Pennsylvania State University, State College, Pennsylvania 16802)

  • Genaro J. Gutierrez

    (University of Texas at Austin, Austin, Texas 78712)

  • Mahesh Nagarajan

    (University of British Columbia, Vancouver, British Columbia V6T 1Z2, Canada)

Abstract

Agribusiness firms, with an eye toward increasing population and evolving weather patterns, are investing heavily into developing new varieties of staple crops that can provide higher yields and are robust to weather fluctuations. In this paper, we describe a multiyear effort at Dow Agrosciences (now Corteva) to manage its seed corn portfolio, which includes several hundred seeds and is valued at more than $1 billion. The effort had two mutually interacting parts: (1) developing a decision-analytic theory to estimate the production yield distributions for new seed varieties from discrete quantile judgments provided by plant biology experts and (2) developing an optimization protocol to determine Dow's annual production plan for the seed portfolio with the flexibility of backup production in South America, under production yield uncertainty. The first part, owned by the research and development (R&D) function, provides yield probability distributions as inputs to the optimization protocol of the second part, which the production function owns. The results of the optimization problem, which include information about the attractiveness of specific future varieties, are returned to R&D. Both parts incorporate contextual details specific to this industry. In this paper, we show the optimality of linear policies for both problems. Additionally, the linear policies have many attractive structural properties that continue to hold for the more complex instances of the problems. A major strength of the theory we developed is that it is implementable in a transparent fashion, providing managers with a user-friendly, real-time decision support tool. The implementation of the theory developed has led to significant monetary and managerial benefits at Dow.

Suggested Citation

  • Saurabh Bansal & Genaro J. Gutierrez & Mahesh Nagarajan, 2021. "Theory-Driven Practical Approach to Integrate R&D and Production Planning for Portfolio Management in Agribusiness," Interfaces, INFORMS, vol. 51(5), pages 332-346, September.
  • Handle: RePEc:inm:orinte:v:51:y:2021:i:5:p:332-346
    DOI: 10.1287/inte.2021.1080
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/inte.2021.1080
    Download Restriction: no

    File URL: https://libkey.io/10.1287/inte.2021.1080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Woonghee Tim Huh & Mahesh Nagarajan, 2010. "Technical note ---Linear Inflation Rules for the Random Yield Problem: Analysis and Computations," Operations Research, INFORMS, vol. 58(1), pages 244-251, February.
    2. Philip C. Jones & Timothy J. Lowe & Rodney D. Traub & Greg Kegler, 2001. "Matching Supply and Demand: The Value of a Second Chance in Producing Hybrid Seed Corn," Manufacturing & Service Operations Management, INFORMS, vol. 3(2), pages 122-137, April.
    3. Saurabh Bansal & Mahesh Nagarajan, 2017. "Product Portfolio Management with Production Flexibility in Agribusiness," Operations Research, INFORMS, vol. 65(4), pages 914-930, August.
    4. Octavio A. Ramirez & Sukant Misra & James Field, 2003. "Crop-Yield Distributions Revisited," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(1), pages 108-120.
    5. Saurabh Bansal & Genaro J. Gutierrez & John R. Keiser, 2017. "Using Experts’ Noisy Quantile Judgments to Quantify Risks: Theory and Application to Agribusiness," Operations Research, INFORMS, vol. 65(5), pages 1115-1130, October.
    6. Donald L. Keefer & Samuel E. Bodily, 1983. "Three-Point Approximations for Continuous Random Variables," Management Science, INFORMS, vol. 29(5), pages 595-609, May.
    7. Rita Esther Zapata-V�zquez & Anthony O'Hagan & Leonardo Soares Bastos, 2014. "Eliciting expert judgements about a set of proportions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 41(9), pages 1919-1933, September.
    8. Ali E. Abbas & David V. Budescu & Hsiu-Ting Yu & Ryan Haggerty, 2008. "A Comparison of Two Probability Encoding Methods: Fixed Probability vs. Fixed Variable Values," Decision Analysis, INFORMS, vol. 5(4), pages 190-202, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saurabh Bansal & Mahesh Nagarajan, 2017. "Product Portfolio Management with Production Flexibility in Agribusiness," Operations Research, INFORMS, vol. 65(4), pages 914-930, August.
    2. Saurabh Bansal & Genaro J. Gutierrez, 2020. "Estimating Uncertainties Using Judgmental Forecasts with Expert Heterogeneity," Operations Research, INFORMS, vol. 68(2), pages 363-380, March.
    3. Saurabh Bansal & James S. Dyer, 2020. "Planning for End-User Substitution in Agribusiness," Operations Research, INFORMS, vol. 68(4), pages 1000-1019, July.
    4. Wei Zhang & Long Gao & Mohammad Zolghadr & Dawei Jian & Mohsen ElHafsi, 2023. "Dynamic incentives for sustainable contract farming," Production and Operations Management, Production and Operations Management Society, vol. 32(7), pages 2049-2067, July.
    5. Saurabh Bansal & Timothy J. Lowe & Philip C. Jones, 2022. "Case Article—Suncrest AgriBusiness Company: Exploiting the Flexibility of Backup Capacity," INFORMS Transactions on Education, INFORMS, vol. 23(1), pages 27-31, September.
    6. G. P. Kiesmüller & K. Inderfurth, 2018. "Approaches for periodic inventory control under random production yield and fixed setup cost," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(2), pages 449-477, March.
    7. Danila Azzolina & Paola Berchialla & Dario Gregori & Ileana Baldi, 2021. "Prior Elicitation for Use in Clinical Trial Design and Analysis: A Literature Review," IJERPH, MDPI, vol. 18(4), pages 1-21, February.
    8. Durai Sundaramoorthi & Lingxiu Dong, 2024. "Machine learning and optimization based decision-support tool for seed variety selection," Annals of Operations Research, Springer, vol. 341(1), pages 5-39, October.
    9. Werner, Christoph & Bedford, Tim & Cooke, Roger M. & Hanea, Anca M. & Morales-Nápoles, Oswaldo, 2017. "Expert judgement for dependence in probabilistic modelling: A systematic literature review and future research directions," European Journal of Operational Research, Elsevier, vol. 258(3), pages 801-819.
    10. Jiayuan Dong & Jiankan Liao & Xun Huan & Daniel Cooper, 2023. "Expert elicitation and data noise learning for material flow analysis using Bayesian inference," Journal of Industrial Ecology, Yale University, vol. 27(4), pages 1105-1122, August.
    11. Anil Gaba & Dana G. Popescu & Zhi Chen, 2019. "Assessing Uncertainty from Point Forecasts," Management Science, INFORMS, vol. 65(1), pages 90-106, January.
    12. Lingxiu Dong, 2021. "Toward Resilient Agriculture Value Chains: Challenges and Opportunities," Production and Operations Management, Production and Operations Management Society, vol. 30(3), pages 666-675, March.
    13. Saurabh Bansal & Genaro J. Gutierrez & John R. Keiser, 2017. "Using Experts’ Noisy Quantile Judgments to Quantify Risks: Theory and Application to Agribusiness," Operations Research, INFORMS, vol. 65(5), pages 1115-1130, October.
    14. Voelkel, Michael A. & Sachs, Anna-Lena & Thonemann, Ulrich W., 2020. "An aggregation-based approximate dynamic programming approach for the periodic review model with random yield," European Journal of Operational Research, Elsevier, vol. 281(2), pages 286-298.
    15. Timothy J. Lowe & Paul V. Preckel, 2004. "Decision Technologies for Agribusiness Problems: A Brief Review of Selected Literature and a Call for Research," Manufacturing & Service Operations Management, INFORMS, vol. 6(3), pages 201-208.
    16. Sandeep Rath & Kumar Rajaram, 2022. "Staff Planning for Hospitals with Implicit Cost Estimation and Stochastic Optimization," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 1271-1289, March.
    17. Jesse B. Tack & David Ubilava, 2015. "Climate and agricultural risk: measuring the effect of ENSO on U.S. crop insurance," Agricultural Economics, International Association of Agricultural Economists, vol. 46(2), pages 245-257, March.
    18. Thomas W. Keelin & Bradford W. Powley, 2011. "Quantile-Parameterized Distributions," Decision Analysis, INFORMS, vol. 8(3), pages 206-219, September.
    19. Tristan Roger & Wael Bousselmi & Patrick Roger & Marc Willinger, 2018. "The effect of price magnitude on analysts' forecasts: evidence from the lab," Working Papers hal-01954919, HAL.
    20. L. Robin Keller & Ali Abbas & Manel Baucells & Vicki M. Bier & David Budescu & John C. Butler & Philippe Delquié & Jason R. W. Merrick & Ahti Salo & George Wu, 2010. "From the Editors..," Decision Analysis, INFORMS, vol. 7(4), pages 327-330, December.
      • L. Robin Keller & Manel Baucells & Kevin F. McCardle & Gregory S. Parnell & Ahti Salo, 2007. "From the Editors..," Decision Analysis, INFORMS, vol. 4(4), pages 173-175, December.
      • L. Robin Keller & Manel Baucells & John C. Butler & Philippe Delquié & Jason R. W. Merrick & Gregory S. Parnell & Ahti Salo, 2008. "From the Editors..," Decision Analysis, INFORMS, vol. 5(4), pages 173-176, December.
      • L. Robin Keller & Manel Baucells & John C. Butler & Philippe Delquié & Jason R. W. Merrick & Gregory S. Parnell & Ahti Salo, 2009. "From the Editors ..," Decision Analysis, INFORMS, vol. 6(4), pages 199-201, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orinte:v:51:y:2021:i:5:p:332-346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.