IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i17p9958-d629484.html
   My bibliography  Save this article

Sediment Organic Carbon Sequestration of Balkhash Lake in Central Asia

Author

Listed:
  • Wen Liu

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Long Ma

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Jilili Abuduwaili

    (State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
    Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
    College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China)

  • Gulnura Issanova

    (Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
    Faculty of Geography and Environmental Sciences, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan)

  • Galymzhan Saparov

    (Research Center for Ecology and Environment of Central Asia, Chinese Academy of Sciences, Urumqi 830011, China
    Kazakh Research Institute of Soil Science and Agrochemistry Named after U. U. Uspanov, Almaty 050060, Kazakhstan)

Abstract

As an important part of the global carbon pool, lake carbon is of great significance in the global carbon cycle. Based on a study of the sedimentary proxies of Balkhash Lake, Central Asia’s largest lake, changes in the organic carbon sequestration in the lake sediments and their possible influence over the past 150 years were studied. The results suggested that the organic carbon in the sediments of Lake Balkhash comes mainly from aquatic plants. The organic carbon burial rate fluctuated from 8.16 to 30.04 g·m −2 ·a −1 and the minimum appeared at the top of the core. The organic carbon burial rate continues to decline as it has over the past 150 years. Global warming, higher hydrodynamic force, and low terrestrial input have not been conducive to the improvement of organic carbon sequestration in Balkhash Lake; the construction of a large reservoir had a greater impact on the sedimentary proxy of total organic carbon content, which could lead to a large deviation for environmental reconstruction. This is the first study to assess the sediment organic carbon sequestration using the modern sediments of Central Asia’s largest lake, which is of great scientific significance. The results contribute to an understanding of organic carbon sequestration in Central Asia and may provide a scientific basis for carbon balance assessment in regional and global scales.

Suggested Citation

  • Wen Liu & Long Ma & Jilili Abuduwaili & Gulnura Issanova & Galymzhan Saparov, 2021. "Sediment Organic Carbon Sequestration of Balkhash Lake in Central Asia," Sustainability, MDPI, vol. 13(17), pages 1-13, September.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9958-:d:629484
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/17/9958/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/17/9958/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chao Yue & Philippe Ciais & Richard A. Houghton & Alexander A. Nassikas, 2020. "Contribution of land use to the interannual variability of the land carbon cycle," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    2. Jean-François Pekel & Andrew Cottam & Noel Gorelick & Alan S. Belward, 2016. "High-resolution mapping of global surface water and its long-term changes," Nature, Nature, vol. 540(7633), pages 418-422, December.
    3. Gennadii Donchyts & Fedor Baart & Hessel Winsemius & Noel Gorelick & Jaap Kwadijk & Nick van de Giesen, 2016. "Earth's surface water change over the past 30 years," Nature Climate Change, Nature, vol. 6(9), pages 810-813, September.
    4. Wen Liu & Long Ma & Jilili Abuduwaili, 2020. "Anthropogenic Influences on Environmental Changes of Lake Bosten, the Largest Inland Freshwater Lake in China," Sustainability, MDPI, vol. 12(2), pages 1-14, January.
    5. Kun Huang & Long Ma & Jilili Abuduwaili & Wen Liu & Gulnura Issanova & Galymzhan Saparov & Lin Lin, 2020. "Human-Induced Enrichment of Potentially Toxic Elements in a Sediment Core of Lake Balkhash, the Largest Lake in Central Asia," Sustainability, MDPI, vol. 12(11), pages 1-13, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Romy Hulskamp & Arjen Luijendijk & Bas Maren & Antonio Moreno-Rodenas & Floris Calkoen & Etiënne Kras & Stef Lhermitte & Stefan Aarninkhof, 2023. "Global distribution and dynamics of muddy coasts," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Yinglin Sun & Bing Liu & Guang Yang & Yongjun Du & Hejiaolong Huang & Ting Wang & Jun Wang, 2023. "Analysis of Spatiotemporal Evolution Patterns and Driving Forces of Reservoirs on the Northern Slope of the Tianshan Mountains in Xinjiang," Sustainability, MDPI, vol. 15(11), pages 1-19, May.
    3. Giacomo Falchetta & Nicolò Stevanato & Magda Moner-Girona & Davide Mazzoni & Emanuela Colombo & Manfred Hafner, 2020. "M-LED: Multi-sectoral Latent Electricity Demand Assessment for Energy Access Planning," Working Papers 2020.09, Fondazione Eni Enrico Mattei.
    4. Berggreen, Steve & Mattisson, Linn, 2023. "The Curse of Bad Geography: Stagnant Water, Diseases, and Children’s Human Capital," Working Papers 2023:11, Lund University, Department of Economics.
    5. Nicolás Ruiz, Néstor & Suárez Alonso, María Luisa & Vidal-Abarca, María Rosario, 2021. "Contributions of dry rivers to human well-being: A global review for future research," Ecosystem Services, Elsevier, vol. 50(C).
    6. Jinlong Li & Genxu Wang & Chunlin Song & Shouqin Sun & Jiapei Ma & Ying Wang & Linmao Guo & Dongfeng Li, 2024. "Recent intensified erosion and massive sediment deposition in Tibetan Plateau rivers," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Mohammad Zeynoddin & Hossein Bonakdari & Silvio José Gumiere & Alain N. Rousseau, 2023. "Multi-Tempo Forecasting of Soil Temperature Data; Application over Quebec, Canada," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    8. Vinícius B. P. Chagas & Pedro L. B. Chaffe & Günter Blöschl, 2022. "Climate and land management accelerate the Brazilian water cycle," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Zhang, Yuliang & Wu, Zhiyong & Singh, Vijay P. & Lin, Qingxia & Ning, Shaowei & Zhou, Yuliang & Jin, Juliang & Zhou, Rongxing & Ma, Qiang, 2023. "Agricultural drought characteristics in a typical plain region considering irrigation, crop growth, and water demand impacts," Agricultural Water Management, Elsevier, vol. 282(C).
    10. Paulilo Brasil & Pedro Medeiros, 2020. "NeStRes – Model for Operation of Non-Strategic Reservoirs for Irrigation in Drylands: Model Description and Application to a Semiarid Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(1), pages 195-210, January.
    11. Donghui Xu & Gautam Bisht & Zeli Tan & Eva Sinha & Alan V. Vittorio & Tian Zhou & Valeriy Y. Ivanov & L. Ruby Leung, 2024. "Climate change will reduce North American inland wetland areas and disrupt their seasonal regimes," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    12. Qianhan Wu & Linghong Ke & Jida Wang & Tamlin M. Pavelsky & George H. Allen & Yongwei Sheng & Xuejun Duan & Yunqiang Zhu & Jin Wu & Lei Wang & Kai Liu & Tan Chen & Wensong Zhang & Chenyu Fan & Bin Yon, 2023. "Satellites reveal hotspots of global river extent change," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    13. Alexey Victorov & Veronika Kapralova & Timofey Orlov & Olga Trapeznikova & Maria Arkhipova, 2022. "Research into Cryolithozone Spatial Pattern Changes Based on the Mathematical Morphology of Landscapes," Energies, MDPI, vol. 15(3), pages 1-19, February.
    14. Renlu Qiao & Shuo Gao & Xiaochang Liu & Li Xia & Guobin Zhang & Xi Meng & Zhiyu Liu & Mo Wang & Shiqi Zhou & Zhiqiang Wu, 2024. "Understanding the global subnational migration patterns driven by hydrological intrusion exposure," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Eleni S. Bekri & Ioannis P. Kokkoris & Charalambos S. Christodoulou & Antonia Sophocleous-Lemonari & Panayotis Dimopoulos, 2023. "Management Implications at a Protected, Peri-Urban, Salt Lake Ecosystem: The Case of Larnaca’s Salt Lakes (Cyprus)," Land, MDPI, vol. 12(9), pages 1-18, September.
    16. Margaret Kalacska & Oliver Lucanus & Leandro Sousa & J. Pablo Arroyo-Mora, 2020. "High-Resolution Surface Water Classifications of the Xingu River, Brazil, Pre and Post Operationalization of the Belo Monte Hydropower Complex," Data, MDPI, vol. 5(3), pages 1-12, August.
    17. Abbasi, H.N. & Zeeshan, Muhammad, 2023. "An integrated Geographic Information System and Analytical Hierarchy process based approach for site suitability analysis of on-grid hybrid concentrated solar-biomass powerplant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    18. Beata Ferencz & Jarosław Dawidek, 2021. "Assessment of Spatial and Vertical Variability of Water Quality: Case Study of a Polymictic Polish Lake," IJERPH, MDPI, vol. 18(16), pages 1-13, August.
    19. Quezada Lambertin, Carlos Eduardo & Nina Vargas, Marco Leandro & Flores Quizbert, Ruben, 2023. "Estimación del indicador 6.6.1: Proporción de cuencas hidrográficas de municipios y territorios indígenas de Bolivia que experimentan grandes cambios en la extensión de sus aguas superficiales," Documentos de trabajo 2/2023, Instituto de Investigaciones Socio-Económicas (IISEC), Universidad Católica Boliviana.
    20. Li, Long & Huang, Xianjin & Yang, Hong, 2023. "Optimizing land use patterns to improve the contribution of land use planning to carbon neutrality target," Land Use Policy, Elsevier, vol. 135(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:17:p:9958-:d:629484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.