IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i8p2793-d347205.html
   My bibliography  Save this article

Characteristics, Cause, and Severity Analysis for Hazmat Transportation Risk Management

Author

Listed:
  • Li Zhou

    (School of Information, Beijing Wuzi University, Beijing 101149, China
    Li Zhou, Chun Guo and Yunxiao Cui are the first authors and contributed equally.)

  • Chun Guo

    (Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, Institute of Transportation System Science and Engineering, School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
    Li Zhou, Chun Guo and Yunxiao Cui are the first authors and contributed equally.)

  • Yunxiao Cui

    (Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, Institute of Transportation System Science and Engineering, School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China
    Li Zhou, Chun Guo and Yunxiao Cui are the first authors and contributed equally.)

  • Jianjun Wu

    (State Key Laboratory of Rail Traffic Control and Safety, Beijing Jiaotong University, Beijing 100044, China)

  • Ying Lv

    (Key Laboratory of Transport Industry of Big Data Application Technologies for Comprehensive Transport, Ministry of Transport, Institute of Transportation System Science and Engineering, School of Traffic and Transportation, Beijing Jiaotong University, Beijing 100044, China)

  • Zhiping Du

    (School of Logistics, Beijing Wuzi University, Beijing 101149, China)

Abstract

The accidents caused by hazardous material during road transportation may result in catastrophic losses of lives and economics, as well as damages to the environment. Regarding the deficiencies in the information systems of hazmat transportation accidents, this study conducts a survey of 371 accidents with consequence Levels II to V involving road transportation in China from 2004–2018. The study proposes a comprehensive analysis framework for understanding the overall status associated with key factors of hazmat transportation in terms of characteristics, cause, and severity. By incorporating the adaptive data analysis techniques and tackling uncertainty, the preventative measures can be carried out for supporting safety management in hazmat transportation. Thus, this study firstly analyzed spatial–temporal trends to understand the major characteristics of hazmat transportation accidents. Secondly, it presented a quantitative description of the relation among the hazmat properties, accident characteristics, and the consequences of the accidents using the decision tree approach. Thirdly, an enhanced F-N curve-based analysis method that can describe the relationship between cumulative probability F and number of deaths N , was proposed under the power-law distribution and applied to several practical data sets for severity analysis. It can evaluate accident severity of hazmat material by road transportation while taking into account uncertainty in terms of data sources. Through the introduction of the as low as reasonably practicable (ALARP) principle for determining acceptable and tolerable levels, it is indicated that the F-N curves are above the tolerable line for most hazmat accident scenarios. The findings can provide an empirically supported theoretical basis for the decision-makers to take action to reduce accident frequencies and risks for effective hazmat transportation management.

Suggested Citation

  • Li Zhou & Chun Guo & Yunxiao Cui & Jianjun Wu & Ying Lv & Zhiping Du, 2020. "Characteristics, Cause, and Severity Analysis for Hazmat Transportation Risk Management," IJERPH, MDPI, vol. 17(8), pages 1-24, April.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:8:p:2793-:d:347205
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/8/2793/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/8/2793/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jianyu Wang & Huapu Lu & Zhiyuan Sun & Tianshi Wang, 2020. "Exploring Factors Influencing Injury Severity of Vehicle At-Fault Accidents: A Comparative Analysis of Passenger and Freight Vehicles," IJERPH, MDPI, vol. 17(4), pages 1-12, February.
    2. Yingying Xing & Shengdi Chen & Shengxue Zhu & Yi Zhang & Jian Lu, 2020. "Exploring Risk Factors Contributing to the Severity of Hazardous Material Transportation Accidents in China," IJERPH, MDPI, vol. 17(4), pages 1-19, February.
    3. Xijie Li & Ying Lv & Wei Sun & Li Zhou, 2019. "Cordon- or Link-Based Pricing: Environment-Oriented Toll Design Models Development and Application," Sustainability, MDPI, vol. 11(1), pages 1-16, January.
    4. Zhen-Song Chen & Min Li & Wen-Tao Kong & Kwai-Sang Chin, 2019. "Evaluation and Selection of HazMat Transportation Alternatives: A PHFLTS- and TOPSIS-Integrated Multi-Perspective Approach," IJERPH, MDPI, vol. 16(21), pages 1-33, October.
    5. Changxi Ma & Jibiao Zhou & Dong Yang, 2020. "Causation Analysis of Hazardous Material Road Transportation Accidents Based on the Ordered Logit Regression Model," IJERPH, MDPI, vol. 17(4), pages 1-25, February.
    6. Changxi Ma & Wei Hao & Fuquan Pan & Wang Xiang, 2018. "Road screening and distribution route multi-objective robust optimization for hazardous materials based on neural network and genetic algorithm," PLOS ONE, Public Library of Science, vol. 13(6), pages 1-22, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ming Sun & Ronggui Zhou & Chengwu Jiao & Xiaoduan Sun, 2022. "Severity Analysis of Hazardous Material Road Transportation Crashes with a Bayesian Network Using Highway Safety Information System Data," IJERPH, MDPI, vol. 19(7), pages 1-22, March.
    2. Ming Sun & Ronggui Zhou, 2023. "Investigation on Hazardous Material Truck Involved Fatal Crashes Using Cluster Correspondence Analysis," Sustainability, MDPI, vol. 15(12), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming Sun & Ronggui Zhou, 2023. "Investigation on Hazardous Material Truck Involved Fatal Crashes Using Cluster Correspondence Analysis," Sustainability, MDPI, vol. 15(12), pages 1-21, June.
    2. Fanyu Meng & Pengpeng Xu & Cancan Song & Kun Gao & Zichu Zhou & Lili Yang, 2020. "Influential Factors Associated with Consecutive Crash Severity: A Two-Level Logistic Modeling Approach," IJERPH, MDPI, vol. 17(15), pages 1-16, August.
    3. Shuaiming Chen & Haipeng Shao & Ximing Ji, 2021. "Insights into Factors Affecting Traffic Accident Severity of Novice and Experienced Drivers: A Machine Learning Approach," IJERPH, MDPI, vol. 18(23), pages 1-20, December.
    4. Ming Sun & Ronggui Zhou & Chengwu Jiao & Xiaoduan Sun, 2022. "Severity Analysis of Hazardous Material Road Transportation Crashes with a Bayesian Network Using Highway Safety Information System Data," IJERPH, MDPI, vol. 19(7), pages 1-22, March.
    5. Sheng Dong & Jibiao Zhou & Changxi Ma, 2020. "Design of a Network Optimization Platform for the Multivehicle Transportation of Hazardous Materials," IJERPH, MDPI, vol. 17(3), pages 1-14, February.
    6. Changxi Ma & Jibiao Zhou & Dong Yang, 2020. "Causation Analysis of Hazardous Material Road Transportation Accidents Based on the Ordered Logit Regression Model," IJERPH, MDPI, vol. 17(4), pages 1-25, February.
    7. Li, Lixiang & Cheng, Rongjun & Ge, Hongxia, 2021. "New feedback control for a novel two-dimensional lattice hydrodynamic model considering driver’s memory effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 561(C).
    8. Xiuguang Song & Jianqing Wu & Hongbo Zhang & Rendong Pi, 2020. "Analysis of Crash Severity for Hazard Material Transportation Using Highway Safety Information System Data," SAGE Open, , vol. 10(3), pages 21582440209, July.
    9. Chen, Jiangfan & Fang, Zheng & Azam, Ali & Wu, Xiaoping & Zhang, Zutao & Lu, Linhai & Li, Dongyang, 2023. "An energy self-circulation system based on the wearable thermoelectric harvester for ART driver monitoring," Energy, Elsevier, vol. 262(PA).
    10. Jianyu Wang & Huapu Lu & Zhiyuan Sun & Tianshi Wang, 2020. "Exploring Factors Influencing Injury Severity of Vehicle At-Fault Accidents: A Comparative Analysis of Passenger and Freight Vehicles," IJERPH, MDPI, vol. 17(4), pages 1-12, February.
    11. Chen Xu & Decun Dong & Dongxiu Ou & Changxi Ma, 2019. "Time-of-Day Control Double-Order Optimization of Traffic Safety and Data-Driven Intersections," IJERPH, MDPI, vol. 16(5), pages 1-18, March.
    12. Yan, Chunyue & Ge, Hongxia & Cheng, Rongjun, 2019. "An extended car-following model by considering the optimal velocity difference and electronic throttle angle," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    13. Xiaoqiu Shi & Wei Long & Yanyan Li & Dingshan Deng, 2020. "Multi-population genetic algorithm with ER network for solving flexible job shop scheduling problems," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-23, May.
    14. Woochul Choi & Hongki Sung & Kyusoo Chong, 2023. "Impact of Illuminated Road Signs on Driver’s Perception," Sustainability, MDPI, vol. 15(16), pages 1-19, August.
    15. Burak, Selmin & Samanlioglu, Funda & Ülker, Duygu, 2022. "Evaluation of irrigation methods in Söke Plain with HF-AHP-PROMETHEE II hybrid MCDM method," Agricultural Water Management, Elsevier, vol. 271(C).
    16. Chen, Can & Ge, Hongxia & Cheng, Rongjun, 2019. "Self-stabilizing analysis of an extended car-following model with consideration of expected effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    17. Masrono Yugihartiman & B. Budiono & Maman Setiawan & Achmad Kemal Hidayat, 2023. "Estimating Travel Choice Probability of Link-Based Congestion Charging Scheme for Car Commuter Trips in Jakarta," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    18. Shengxue Zhu & Shiwen Zhang & Hong Lang & Chenming Jiang & Yingying Xing, 2022. "The Situation of Hazardous Materials Accidents during Road Transportation in China from 2013 to 2019," IJERPH, MDPI, vol. 19(15), pages 1-15, August.
    19. Qi, Xinyue & Ge, Hongxia & Cheng, Rongjun, 2019. "Analysis of a novel lattice hydrodynamic model considering density integral and “backward looking” effect," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 714-723.
    20. Wang, Jinpei & Bai, Xuejie & Liu, Yankui, 2023. "Globalized robust bilevel optimization model for hazmat transport network design considering reliability," Reliability Engineering and System Safety, Elsevier, vol. 239(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:8:p:2793-:d:347205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.