IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i4p1344-d322672.html
   My bibliography  Save this article

Exploring Risk Factors Contributing to the Severity of Hazardous Material Transportation Accidents in China

Author

Listed:
  • Yingying Xing

    (College of Transportation Engineering, Tongji University, Key Laboratory of Road and Traffic Engineering of the State Ministry of Education, Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Shanghai 201804, China)

  • Shengdi Chen

    (School of Transport & Communications, Shanghai Maritime University, 1550 Haigang Street, Shanghai 201306, China)

  • Shengxue Zhu

    (Jiangsu key Laboratory of Traffic and Transportation Security, Huaiyin Institute of Technology, Huaian 223003, China)

  • Yi Zhang

    (Department of Transportation Engineering, School of Naval Architecture, Ocean & Civil Engineering, Shanghai Jiaotong University, Shanghai 200240, China)

  • Jian Lu

    (College of Transportation Engineering, Tongji University, Key Laboratory of Road and Traffic Engineering of the State Ministry of Education, Shanghai Key Laboratory of Rail Infrastructure Durability and System Safety, Shanghai 201804, China)

Abstract

With the increasing demand of hazardous material (Hazmat), traffic accidents occurred frequently during Hazmat transportation, which had caused widespread concern in communities. Therefore, a good understanding of Hazmat transportation accident characteristics and contributing factors is of practical importance. In this study, 1721 Hazmat accidents that have occurred during road transportation for the period 2014–2017 in China were examined, and a random-parameters ordered probit model was established to explore the influence of contributing factors on the severity of accidents by accounting for unobserved heterogeneity in the data. Both the injuries and the number of people evacuated were considered as the indicator of accident severity and investigated, respectively. Results show that higher injury severity is likely to be associated with type of Hazmat (compressed gas, explosive, and poison), misoperation, driver fatigue, speeding, tunnel, slope, county road, dry road surface, winter, dark, more than two vehicles, rear end crash, and explosion. As for the correlation between risk factors and the severity of evacuation, type of Hazmat (compressed gas, explosive, and poison), quantity of Hazmat (10–39 t), misoperation, county road, dry road surface, weekdays, dusk, explosion significantly contribute to increasing the severity of evacuation of Hazmat accidents.

Suggested Citation

  • Yingying Xing & Shengdi Chen & Shengxue Zhu & Yi Zhang & Jian Lu, 2020. "Exploring Risk Factors Contributing to the Severity of Hazardous Material Transportation Accidents in China," IJERPH, MDPI, vol. 17(4), pages 1-19, February.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:4:p:1344-:d:322672
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/4/1344/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/4/1344/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Garrido, Rodrigo A. & Bronfman, Andrés C., 2017. "Equity and social acceptability in multiple hazardous materials routing through urban areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 244-260.
    2. Kenneth Train ., 2000. "Halton Sequences for Mixed Logit," Economics Working Papers E00-278, University of California at Berkeley.
    3. Talarico, Luca & Reniers, Genserik & Sörensen, Kenneth & Springael, Johan, 2015. "MISTRAL: A game-theoretical model to allocate security measures in a multi-modal chemical transportation network with adaptive adversaries," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 105-114.
    4. Bhat, Chandra R., 2003. "Simulation estimation of mixed discrete choice models using randomized and scrambled Halton sequences," Transportation Research Part B: Methodological, Elsevier, vol. 37(9), pages 837-855, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jinpei & Bai, Xuejie & Liu, Yankui, 2023. "Globalized robust bilevel optimization model for hazmat transport network design considering reliability," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    2. Li Zhou & Chun Guo & Yunxiao Cui & Jianjun Wu & Ying Lv & Zhiping Du, 2020. "Characteristics, Cause, and Severity Analysis for Hazmat Transportation Risk Management," IJERPH, MDPI, vol. 17(8), pages 1-24, April.
    3. Fanyu Meng & Pengpeng Xu & Cancan Song & Kun Gao & Zichu Zhou & Lili Yang, 2020. "Influential Factors Associated with Consecutive Crash Severity: A Two-Level Logistic Modeling Approach," IJERPH, MDPI, vol. 17(15), pages 1-16, August.
    4. Shengxue Zhu & Shiwen Zhang & Hong Lang & Chenming Jiang & Yingying Xing, 2022. "The Situation of Hazardous Materials Accidents during Road Transportation in China from 2013 to 2019," IJERPH, MDPI, vol. 19(15), pages 1-15, August.
    5. Shuaiming Chen & Haipeng Shao & Ximing Ji, 2021. "Insights into Factors Affecting Traffic Accident Severity of Novice and Experienced Drivers: A Machine Learning Approach," IJERPH, MDPI, vol. 18(23), pages 1-20, December.
    6. Ming Sun & Ronggui Zhou & Chengwu Jiao & Xiaoduan Sun, 2022. "Severity Analysis of Hazardous Material Road Transportation Crashes with a Bayesian Network Using Highway Safety Information System Data," IJERPH, MDPI, vol. 19(7), pages 1-22, March.
    7. Ming Sun & Ronggui Zhou, 2023. "Investigation on Hazardous Material Truck Involved Fatal Crashes Using Cluster Correspondence Analysis," Sustainability, MDPI, vol. 15(12), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    2. Dubey, Subodh & Sharma, Ishant & Mishra, Sabyasachee & Cats, Oded & Bansal, Prateek, 2022. "A General Framework to Forecast the Adoption of Novel Products: A Case of Autonomous Vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 63-95.
    3. Muhammad Ijaz & Lan Liu & Yahya Almarhabi & Arshad Jamal & Sheikh Muhammad Usman & Muhammad Zahid, 2022. "Temporal Instability of Factors Affecting Injury Severity in Helmet-Wearing and Non-Helmet-Wearing Motorcycle Crashes: A Random Parameter Approach with Heterogeneity in Means and Variances," IJERPH, MDPI, vol. 19(17), pages 1-24, August.
    4. Staus, Alexander, 2008. "Standard and Shuffled Halton Sequences in a Mixed Logit Model," Working Papers 93856, Universitaet Hohenheim, Institute of Agricultural Policy and Agricultural Markets.
    5. Zhu, Dianchen & Sze, N.N. & Feng, Zhongxiang & Chan, Ho-Yin, 2023. "Waiting for signalized crossing or walking to footbridge/underpass? Examining the effect of weather using stated choice experiment with panel mixed random regret minimization approach," Transport Policy, Elsevier, vol. 138(C), pages 144-169.
    6. Sandor, Zsolt & Andras, P.Peter, 2004. "Alternative sampling methods for estimating multivariate normal probabilities," Journal of Econometrics, Elsevier, vol. 120(2), pages 207-234, June.
    7. Eran Ben-Elia & Robert Ishaq & Yoram Shiftan, 2013. "“If only I had taken the other road...”: Regret, risk and reinforced learning in informed route-choice," Transportation, Springer, vol. 40(2), pages 269-293, February.
    8. Marco A. Palma & Dmitry V. Vedenov & David Bessler, 2020. "The order of variables, simulation noise, and accuracy of mixed logit estimates," Empirical Economics, Springer, vol. 58(5), pages 2049-2083, May.
    9. Yu, Jie & Goos, Peter & Vandebroek, Martina, 2010. "Comparing different sampling schemes for approximating the integrals involved in the efficient design of stated choice experiments," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1268-1289, December.
    10. Ben-Elia, Eran & Ettema, Dick, 2009. "Carrots versus sticks: Rewarding commuters for avoiding the rush-hour--a study of willingness to participate," Transport Policy, Elsevier, vol. 16(2), pages 68-76, March.
    11. Abdelradi, Fadi & Abdu, Khaled, 2015. "Evaluation of consumers' lifestyles and willingness to pay for dates: A hybrid choice model approach," 143rd Joint EAAE/AAEA Seminar, March 25-27, 2015, Naples, Italy 202720, European Association of Agricultural Economists.
    12. Subodh Dubey & Ishant Sharma & Sabyasachee Mishra & Oded Cats & Prateek Bansal, 2021. "A General Framework to Forecast the Adoption of Novel Products: A Case of Autonomous Vehicles," Papers 2109.06169, arXiv.org.
    13. Czajkowski, Mikołaj & Budziński, Wiktor, 2019. "Simulation error in maximum likelihood estimation of discrete choice models," Journal of choice modelling, Elsevier, vol. 31(C), pages 73-85.
    14. Ben-Elia, Eran & Shiftan, Yoram, 2010. "Which road do I take? A learning-based model of route-choice behavior with real-time information," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 249-264, May.
    15. de Lapparent, M., & Axhausen , K.W. & Frei, A., 2013. "Long distance mode choice and distributions of values of travel time savings in three European countries," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 53, pages 1-7.
    16. Ahtiainen, Heini & Pouta, Eija & Zawadzki, Wojciech & Tienhaara, Annika, 2023. "Cost vector effects in discrete choice experiments with positive status quo cost," Journal of choice modelling, Elsevier, vol. 47(C).
    17. Ben-Elia, Eran & Ettema, Dick, 2011. "Rewarding rush-hour avoidance: A study of commuters' travel behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(7), pages 567-582, August.
    18. Munger, D. & L’Ecuyer, P. & Bastin, F. & Cirillo, C. & Tuffin, B., 2012. "Estimation of the mixed logit likelihood function by randomized quasi-Monte Carlo," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 305-320.
    19. Mahmud, Asif & Gayah, Vikash V. & Paleti, Rajesh, 2022. "A latent choice model to analyze the role of preliminary preferences in shaping observed choices," Transportation Research Part B: Methodological, Elsevier, vol. 161(C), pages 95-108.
    20. Bond, Craig A. & Thilmany, Dawn D. & Bond, Jennifer Keeling, 2008. "What to Choose? The Value of Label Claims to Fresh Produce Consumers," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 33(3), pages 1-26.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:4:p:1344-:d:322672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.