IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i7p2194-d336949.html
   My bibliography  Save this article

School Neighbourhood Built Environment Assessment for Adolescents’ Active Transport to School: Modification of an Environmental Audit Tool and Protocol (MAPS Global-SN)

Author

Listed:
  • Tessa Pocock

    (Active Living Laboratory, School of Physical Education, Sport and Exercise Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand)

  • Antoni Moore

    (School of Surveying, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand)

  • Javier Molina-García

    (Department of Teaching of Musical, Visual and Corporal Expression, University of Valencia, Avda. dels Tarongers, 4, 46022 Valencia, Spain
    AFIPS research group, University of Valencia, 46022 Valencia, Spain)

  • Ana Queralt

    (AFIPS research group, University of Valencia, 46022 Valencia, Spain
    Department of Nursing, University of Valencia, Jaume Roig, s/n, 46010 Valencia, Spain)

  • Sandra Mandic

    (Active Living Laboratory, School of Physical Education, Sport and Exercise Sciences, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand
    Centre for Sustainability, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand)

Abstract

School neighbourhood built environments (SN-BE) can influence adolescents’ active transport to school habits. Typically, SN-BE assessment has involved micro-scale (i.e., environmental audits) or macro-scale (Geographic Information Systems (GIS)) assessment tools. However, existing environmental audits are time/resource-intensive and not specific to school neighbourhoods, while GIS databases are not generally purposed to include micro-scale data. This study evaluated the inter-rater reliability and feasibility of using a modified audit tool and protocol (Microscale Audit of Pedestrian Streetscapes Global–School Neighbourhood (MAPS Global-SN)) to assess the SN-BE of twelve secondary schools in Dunedin, New Zealand. Correlations between MAPS Global-SN and GIS measures of the SN-BE were also examined. Specifically, MAPS Global-SN audit and GIS spatial analysis (intersection density, residential density, land use mix, walkability) was conducted within a 0.5 km street-network buffer-zone around all twelve schools. Based on investigator and expert consultation, MAPS Global-SN included eight modifications to both auditing processes and items. Inter-rater reliability data was collected from two independent auditors across two schools. The feasibility of a condensed audit protocol (auditing one side of each street segment in the neighbourhood, compared to both sides) was also assessed. Results indicated the modified MAPS Global-SN tool had good to excellent inter-rater reliability and the condensed MAPS Global-SN audit protocol appeared to sufficiently represent the micro-scale SN-BE. Results also highlighted the complementary nature of micro- and macro-scale assessments. Further recommendations for SN-BE assessment are discussed.

Suggested Citation

  • Tessa Pocock & Antoni Moore & Javier Molina-García & Ana Queralt & Sandra Mandic, 2020. "School Neighbourhood Built Environment Assessment for Adolescents’ Active Transport to School: Modification of an Environmental Audit Tool and Protocol (MAPS Global-SN)," IJERPH, MDPI, vol. 17(7), pages 1-17, March.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:7:p:2194-:d:336949
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/7/2194/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/7/2194/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Broberg, Anna & Sarjala, Satu, 2015. "School travel mode choice and the characteristics of the urban built environment: The case of Helsinki, Finland," Transport Policy, Elsevier, vol. 37(C), pages 1-10.
    2. Christine A. Mitchell & Andrew F. Clark & Jason A. Gilliland, 2016. "Built Environment Influences of Children’s Physical Activity: Examining Differences by Neighbourhood Size and Sex," IJERPH, MDPI, vol. 13(1), pages 1-14, January.
    3. Larsen, K. & Gilliland, J. & Hess, P. & Tucker, P. & Irwin, J. & He, M., 2009. "The influence of the physical environment and sociodemographic characteristics on children's mode of travel to and from school," American Journal of Public Health, American Public Health Association, vol. 99(3), pages 520-526.
    4. Cain, Kelli L. & Millstein, Rachel A. & Sallis, James F. & Conway, Terry L. & Gavand, Kavita A. & Frank, Lawrence D. & Saelens, Brian E. & Geremia, Carrie M. & Chapman, James & Adams, Marc A. & Glanz,, 2014. "Contribution of streetscape audits to explanation of physical activity in four age groups based on the Microscale Audit of Pedestrian Streetscapes (MAPS)," Social Science & Medicine, Elsevier, vol. 116(C), pages 82-92.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Man & Wang, Yupeng & Zhou, Dian, 2023. "Effects of the built environment and sociodemographic characteristics on Children's school travel," Transport Policy, Elsevier, vol. 134(C), pages 191-202.
    2. Suzanne Tillmann & Andrew F. Clark & Jason A. Gilliland, 2018. "Children and Nature: Linking Accessibility of Natural Environments and Children’s Health-Related Quality of Life," IJERPH, MDPI, vol. 15(6), pages 1-15, May.
    3. Xiaofeng Ji & Haotian Guan & Mengyuan Lu & Fang Chen & Wenwen Qin, 2022. "International Research Progress in School Travel and Behavior: A Literature Review and Bibliometric Analysis," Sustainability, MDPI, vol. 14(14), pages 1-25, July.
    4. Melody Smith & Suzanne Mavoa & Erika Ikeda & Kamyar Hasanzadeh & Jinfeng Zhao & Tiina E. Rinne & Niamh Donnellan & Marketta Kyttä & Jianqiang Cui, 2022. "Associations between Children’s Physical Activity and Neighborhood Environments Using GIS: A Secondary Analysis from a Systematic Scoping Review," IJERPH, MDPI, vol. 19(3), pages 1-23, January.
    5. Saad AlQuhtani, 2023. "Factors Affecting Active Commuting to School in Sprawled Cities: The Case of Najran City, Saudi Arabia," Sustainability, MDPI, vol. 15(12), pages 1-17, June.
    6. Sharmin, Samia & Kamruzzaman, Md., 2017. "Association between the built environment and children's independent mobility: A meta-analytic review," Journal of Transport Geography, Elsevier, vol. 61(C), pages 104-117.
    7. Alireza Ermagun & Amir Samimi, 2018. "Mode choice and travel distance joint models in school trips," Transportation, Springer, vol. 45(6), pages 1755-1781, November.
    8. Chen, Peng & Jiao, Junfeng & Xu, Mengyuan & Gao, Xu & Bischak, Chris, 2018. "Promoting active student travel: A longitudinal study," Journal of Transport Geography, Elsevier, vol. 70(C), pages 265-274.
    9. Dorji Wangzom & Marcus White & Jeni Paay, 2023. "Perceived Safety Influencing Active Travel to School—A Built Environment Perspective," IJERPH, MDPI, vol. 20(2), pages 1-12, January.
    10. Dawei Mei & Chunliang Xiu & Xinghua Feng & Ye Wei, 2019. "Study of the School–Residence Spatial Relationship and the Characteristics of Travel-to-School Distance in Shenyang," Sustainability, MDPI, vol. 11(16), pages 1-15, August.
    11. Zwerts, Enid & Allaert, Georges & Janssens, Davy & Wets, Geert & Witlox, Frank, 2010. "How children view their travel behaviour: a case study from Flanders (Belgium)," Journal of Transport Geography, Elsevier, vol. 18(6), pages 702-710.
    12. Yafeng Zou & Qi Wang & Min Deng & Yujie Wang, 2021. "Community Intervention System: COVID-19 Control in Inner Mongolia Autonomous Region, China," IJERPH, MDPI, vol. 18(23), pages 1-18, December.
    13. Buttazzoni, Adrian N. & Coen, Stephanie E. & Gilliland, Jason A., 2018. "Supporting active school travel: A qualitative analysis of implementing a regional safe routes to school program," Social Science & Medicine, Elsevier, vol. 212(C), pages 181-190.
    14. Julian A. Reed & Rachel M. Ballard & Michael Hill & David Berrigan, 2020. "Identification of Effective Programs to Improve Access to and Use of Trails among Youth from Under-Resourced Communities: A Review," IJERPH, MDPI, vol. 17(21), pages 1-33, October.
    15. Ali Soltani & Mahsa Zamiri, 2011. "Investigation of School Students' Travel Patterns, Two Case Areas of Mashhad, Iran," Modern Applied Science, Canadian Center of Science and Education, vol. 5(5), pages 184-184, October.
    16. Bhat, Chandra R. & Pinjari, Abdul R. & Dubey, Subodh K. & Hamdi, Amin S., 2016. "On accommodating spatial interactions in a Generalized Heterogeneous Data Model (GHDM) of mixed types of dependent variables," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 240-263.
    17. Bartzokas-Tsiompras, Alexandros & Bakogiannis, Efthimios & Nikitas, Alexandros, 2023. "Global microscale walkability ratings and rankings: A novel composite indicator for 59 European city centres," Journal of Transport Geography, Elsevier, vol. 111(C).
    18. Ermagun, Alireza & Levinson, David, 2016. "Intra-household bargaining for school trip accompaniment of children: A group decision approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 222-234.
    19. Mouhcine Guettabi & Abdul Munasib, 2014. "Urban Sprawl, Obesogenic Environment, And Child Weight," Journal of Regional Science, Wiley Blackwell, vol. 54(3), pages 378-401, June.
    20. Robert J. Noonan & Lynne M. Boddy & Zoe R. Knowles & Stuart J. Fairclough, 2017. "Fitness, Fatness and Active School Commuting among Liverpool Schoolchildren," IJERPH, MDPI, vol. 14(9), pages 1-12, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:7:p:2194-:d:336949. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.