IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i17p10526-d896031.html
   My bibliography  Save this article

Temporal Instability of Factors Affecting Injury Severity in Helmet-Wearing and Non-Helmet-Wearing Motorcycle Crashes: A Random Parameter Approach with Heterogeneity in Means and Variances

Author

Listed:
  • Muhammad Ijaz

    (School of Transportation and Logistics, Southwest Jiaotong University, Chengdu 610031, China)

  • Lan Liu

    (School of Transportation and Logistics, Southwest Jiaotong University, Chengdu 610031, China)

  • Yahya Almarhabi

    (Center of Excellence in Trauma and Accidents, King Abdulaziz University, Jeddah 21589, Saudi Arabia
    Department of Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Arshad Jamal

    (Transportation and Traffic Engineering Department, College of Engineering, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31451, Saudi Arabia)

  • Sheikh Muhammad Usman

    (Department of Civil Engineering, CECOS University of I.T. & Emerging Sciences, Peshawar 25000, Pakistan)

  • Muhammad Zahid

    (College of Metropolitan Transportation, Beijing University of Technology, Beijing 100124, China)

Abstract

Not wearing a helmet, not properly strapping the helmet on, or wearing a substandard helmet increases the risk of fatalities and injuries in motorcycle crashes. This research examines the differences in motorcycle crash injury severity considering crashes involving the compliance with and defiance of helmet use by motorcycle riders and highlights the temporal variation in their impact. Three-year (2017–2019) motorcycle crash data were collected from RESCUE 1122, a provincial emergency response service for Rawalpindi, Pakistan. The available crash data include crash-specific information, vehicle, driver, spatial and temporal characteristics, roadway features, and traffic volume, which influence the motorcyclist’s injury severity. A random parameters logit model with heterogeneity in means and variances was evaluated to predict critical contributory factors in helmet-wearing and non-helmet-wearing motorcyclist crashes. Model estimates suggest significant variations in the impact of explanatory variables on motorcyclists’ injury severity in the case of compliance with and defiance of helmet use. For helmet-wearing motorcyclists, key factors significantly associated with increasingly severe injury and fatal injuries include young riders (below 20 years of age), female pillion riders, collisions with another motorcycle, large trucks, passenger car, drivers aged 50 years and above, and drivers being distracted while driving. In contrast, for non-helmet-wearing motorcyclists, the significant factors responsible for severe injuries and fatalities were distracted driving, the collision of two motorcycles, crashes at U-turns, weekday crashes, and drivers above 50 years of age. The impact of parameters that predict motorcyclist injury severity was found to vary dramatically over time, exhibiting statistically significant temporal instability. The results of this study can serve as potential motorcycle safety guidelines for all relevant stakeholders to improve the state of motorcycle safety in the country.

Suggested Citation

  • Muhammad Ijaz & Lan Liu & Yahya Almarhabi & Arshad Jamal & Sheikh Muhammad Usman & Muhammad Zahid, 2022. "Temporal Instability of Factors Affecting Injury Severity in Helmet-Wearing and Non-Helmet-Wearing Motorcycle Crashes: A Random Parameter Approach with Heterogeneity in Means and Variances," IJERPH, MDPI, vol. 19(17), pages 1-24, August.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:17:p:10526-:d:896031
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/17/10526/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/17/10526/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Muhammad Zahid & Yangzhou Chen & Arshad Jamal & Khalaf A. Al-Ofi & Hassan M. Al-Ahmadi, 2020. "Adopting Machine Learning and Spatial Analysis Techniques for Driver Risk Assessment: Insights from a Case Study," IJERPH, MDPI, vol. 17(14), pages 1-15, July.
    2. Magdalena Blanco & Jose Maria Cabrera & Felipe Carozzi & Alejandro Cid de Orta, 2022. "Mandatory Helmet Use and the Severity of Motorcycle Accidents: No Brainer?," Economía Journal, The Latin American and Caribbean Economic Association - LACEA, vol. 0(Spring 20), pages 187-218, June.
    3. Amjad Pervez & Jaeyoung Lee & Helai Huang & Xiaoqi Zhai, 2022. "What Factors Would Make Single-Vehicle Motorcycle Crashes Fatal? Empirical Evidence from Pakistan," IJERPH, MDPI, vol. 19(10), pages 1-14, May.
    4. Kenneth Train ., 2000. "Halton Sequences for Mixed Logit," Economics Working Papers E00-278, University of California at Berkeley.
    5. Arshad Jamal & Waleed Umer, 2020. "Exploring the Injury Severity Risk Factors in Fatal Crashes with Neural Network," IJERPH, MDPI, vol. 17(20), pages 1-22, October.
    6. Tufail Ahmed & Mehdi Moeinaddini & Meshal Almoshaogeh & Arshad Jamal & Imran Nawaz & Fawaz Alharbi, 2021. "A New Pedestrian Crossing Level of Service (PCLOS) Method for Promoting Safe Pedestrian Crossing in Urban Areas," IJERPH, MDPI, vol. 18(16), pages 1-18, August.
    7. Abdulla I. M. Almadi & Rabia Emhamed Al Mamlook & Yahya Almarhabi & Irfan Ullah & Arshad Jamal & Nishantha Bandara, 2022. "A Fuzzy-Logic Approach Based on Driver Decision-Making Behavior Modeling and Simulation," Sustainability, MDPI, vol. 14(14), pages 1-19, July.
    8. Bhat, Chandra R., 2003. "Simulation estimation of mixed discrete choice models using randomized and scrambled Halton sequences," Transportation Research Part B: Methodological, Elsevier, vol. 37(9), pages 837-855, November.
    9. Muhammad Zahid & Yangzhou Chen & Sikandar Khan & Arshad Jamal & Muhammad Ijaz & Tufail Ahmed, 2020. "Predicting Risky and Aggressive Driving Behavior among Taxi Drivers: Do Spatio-Temporal Attributes Matter?," IJERPH, MDPI, vol. 17(11), pages 1-21, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thanapong Champahom & Chamroeun Se & Sajjakaj Jomnonkwao & Tassana Boonyoo & Vatanavongs Ratanavaraha, 2023. "A Comparison of Contributing Factors between Young and Old Riders of Motorcycle Crash Severity on Local Roads," Sustainability, MDPI, vol. 15(3), pages 1-24, February.
    2. Zhaoming Chen & Wenyuan Xu & Youyang Qu, 2023. "Joint Analysis of Crash Frequency by Severity Based on a Random Parameters Approach," Sustainability, MDPI, vol. 15(21), pages 1-25, October.
    3. Adnan Yousaf & Jianping Wu, 2023. "Motorcycle-Riding Experience: Friend or Foe? Understanding Its Effects on Driving Behavior and Accident Risk," Sustainability, MDPI, vol. 15(13), pages 1-17, July.
    4. Arshad Jamal & Muhammad Ijaz & Meshal Almosageah & Hassan M. Al-Ahmadi & Muhammad Zahid & Irfan Ullah & Rabia Emhamed Al Mamlook, 2022. "Implementing the Maximum Likelihood Method for Critical Gap Estimation under Heterogeneous Traffic Conditions," Sustainability, MDPI, vol. 14(23), pages 1-13, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danish Farooq & Sarbast Moslem & Arshad Jamal & Farhan Muhammad Butt & Yahya Almarhabi & Rana Faisal Tufail & Meshal Almoshaogeh, 2021. "Assessment of Significant Factors Affecting Frequent Lane-Changing Related to Road Safety: An Integrated Approach of the AHP–BWM Model," IJERPH, MDPI, vol. 18(20), pages 1-17, October.
    2. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    3. Dubey, Subodh & Sharma, Ishant & Mishra, Sabyasachee & Cats, Oded & Bansal, Prateek, 2022. "A General Framework to Forecast the Adoption of Novel Products: A Case of Autonomous Vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 63-95.
    4. Staus, Alexander, 2008. "Standard and Shuffled Halton Sequences in a Mixed Logit Model," Working Papers 93856, Universitaet Hohenheim, Institute of Agricultural Policy and Agricultural Markets.
    5. Yingying Xing & Shengdi Chen & Shengxue Zhu & Yi Zhang & Jian Lu, 2020. "Exploring Risk Factors Contributing to the Severity of Hazardous Material Transportation Accidents in China," IJERPH, MDPI, vol. 17(4), pages 1-19, February.
    6. Zhu, Dianchen & Sze, N.N. & Feng, Zhongxiang & Chan, Ho-Yin, 2023. "Waiting for signalized crossing or walking to footbridge/underpass? Examining the effect of weather using stated choice experiment with panel mixed random regret minimization approach," Transport Policy, Elsevier, vol. 138(C), pages 144-169.
    7. Sandor, Zsolt & Andras, P.Peter, 2004. "Alternative sampling methods for estimating multivariate normal probabilities," Journal of Econometrics, Elsevier, vol. 120(2), pages 207-234, June.
    8. Eran Ben-Elia & Robert Ishaq & Yoram Shiftan, 2013. "“If only I had taken the other road...”: Regret, risk and reinforced learning in informed route-choice," Transportation, Springer, vol. 40(2), pages 269-293, February.
    9. Marco A. Palma & Dmitry V. Vedenov & David Bessler, 2020. "The order of variables, simulation noise, and accuracy of mixed logit estimates," Empirical Economics, Springer, vol. 58(5), pages 2049-2083, May.
    10. Arshad Jamal & Muhammad Ijaz & Meshal Almosageah & Hassan M. Al-Ahmadi & Muhammad Zahid & Irfan Ullah & Rabia Emhamed Al Mamlook, 2022. "Implementing the Maximum Likelihood Method for Critical Gap Estimation under Heterogeneous Traffic Conditions," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    11. Yu, Jie & Goos, Peter & Vandebroek, Martina, 2010. "Comparing different sampling schemes for approximating the integrals involved in the efficient design of stated choice experiments," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1268-1289, December.
    12. Arshad Jamal & Waleed Umer, 2020. "Exploring the Injury Severity Risk Factors in Fatal Crashes with Neural Network," IJERPH, MDPI, vol. 17(20), pages 1-22, October.
    13. Ben-Elia, Eran & Ettema, Dick, 2009. "Carrots versus sticks: Rewarding commuters for avoiding the rush-hour--a study of willingness to participate," Transport Policy, Elsevier, vol. 16(2), pages 68-76, March.
    14. Abdelradi, Fadi & Abdu, Khaled, 2015. "Evaluation of consumers' lifestyles and willingness to pay for dates: A hybrid choice model approach," 143rd Joint EAAE/AAEA Seminar, March 25-27, 2015, Naples, Italy 202720, European Association of Agricultural Economists.
    15. Subodh Dubey & Ishant Sharma & Sabyasachee Mishra & Oded Cats & Prateek Bansal, 2021. "A General Framework to Forecast the Adoption of Novel Products: A Case of Autonomous Vehicles," Papers 2109.06169, arXiv.org.
    16. Tufail Ahmed & Mehdi Moeinaddini & Meshal Almoshaogeh & Arshad Jamal & Imran Nawaz & Fawaz Alharbi, 2021. "A New Pedestrian Crossing Level of Service (PCLOS) Method for Promoting Safe Pedestrian Crossing in Urban Areas," IJERPH, MDPI, vol. 18(16), pages 1-18, August.
    17. Czajkowski, Mikołaj & Budziński, Wiktor, 2019. "Simulation error in maximum likelihood estimation of discrete choice models," Journal of choice modelling, Elsevier, vol. 31(C), pages 73-85.
    18. Ben-Elia, Eran & Shiftan, Yoram, 2010. "Which road do I take? A learning-based model of route-choice behavior with real-time information," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 249-264, May.
    19. de Lapparent, M., & Axhausen , K.W. & Frei, A., 2013. "Long distance mode choice and distributions of values of travel time savings in three European countries," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 53, pages 1-7.
    20. Ahtiainen, Heini & Pouta, Eija & Zawadzki, Wojciech & Tienhaara, Annika, 2023. "Cost vector effects in discrete choice experiments with positive status quo cost," Journal of choice modelling, Elsevier, vol. 47(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:17:p:10526-:d:896031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.