IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v46y2012i2p305-320.html
   My bibliography  Save this article

Estimation of the mixed logit likelihood function by randomized quasi-Monte Carlo

Author

Listed:
  • Munger, D.
  • L’Ecuyer, P.
  • Bastin, F.
  • Cirillo, C.
  • Tuffin, B.

Abstract

We examine the effectiveness of randomized quasi-Monte Carlo (RQMC) techniques to estimate the integrals that express the discrete choice probabilities in a mixed logit model, for which no closed form formula is available. These models are used extensively in travel behavior research. We consider popular RQMC constructions such as randomized Sobol’, Faure, and Halton points, but our main emphasis is on randomly-shifted lattice rules, for which we study how to select the parameters as a function of the considered class of integrands. We compare the effectiveness of all these methods and of standard Monte Carlo (MC) to reduce both the variance and the bias when estimating the log-likelihood function at a given parameter value. In our numerical experiments, randomized lattice rules (with carefully selected parameters) and digital nets are the best performers and they reduce the bias as much as the variance. With panel data, in our examples, the performance of all RQMC methods degrades rapidly when we simultaneously increase the dimension and the number of observations per individual.

Suggested Citation

  • Munger, D. & L’Ecuyer, P. & Bastin, F. & Cirillo, C. & Tuffin, B., 2012. "Estimation of the mixed logit likelihood function by randomized quasi-Monte Carlo," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 305-320.
  • Handle: RePEc:eee:transb:v:46:y:2012:i:2:p:305-320
    DOI: 10.1016/j.trb.2011.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261511001457
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2011.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sándor, Zsolt & Train, Kenneth, 2004. "Quasi-random simulation of discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 38(4), pages 313-327, May.
    2. Fabian Bastin & Cinzia Cirillo & Philippe L. Toint, 2010. "Estimating Nonparametric Random Utility Models with an Application to the Value of Time in Heterogeneous Populations," Transportation Science, INFORMS, vol. 44(4), pages 537-549, November.
    3. Bhat, Chandra R., 2001. "Quasi-random maximum simulated likelihood estimation of the mixed multinomial logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 677-693, August.
    4. Kenneth Train ., 2000. "Halton Sequences for Mixed Logit," Economics Working Papers E00-278, University of California at Berkeley.
    5. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, September.
    6. Fabian Bastin & Cinzia Cirillo & Philippe Toint, 2006. "An adaptive Monte Carlo algorithm for computing mixed logit estimators," Computational Management Science, Springer, vol. 3(1), pages 55-79, January.
    7. Cirillo, C. & Axhausen, K.W., 2006. "Evidence on the distribution of values of travel time savings from a six-week diary," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(5), pages 444-457, June.
    8. Brownstone, David & Bunch, David S. & Train, Kenneth, 2000. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 34(5), pages 315-338, June.
    9. Hess, Stephane & Bierlaire, Michel & Polak, John W., 2005. "Estimation of value of travel-time savings using mixed logit models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(2-3), pages 221-236.
    10. Pierre L'Ecuyer & Christiane Lemieux, 2000. "Variance Reduction via Lattice Rules," Management Science, INFORMS, vol. 46(9), pages 1214-1235, September.
    11. Pierre L’Ecuyer, 2009. "Quasi-Monte Carlo methods with applications in finance," Finance and Stochastics, Springer, vol. 13(3), pages 307-349, September.
    12. Bhat, Chandra R., 2003. "Simulation estimation of mixed discrete choice models using randomized and scrambled Halton sequences," Transportation Research Part B: Methodological, Elsevier, vol. 37(9), pages 837-855, November.
    13. Chandra Bhat & Ipek Sener, 2009. "A copula-based closed-form binary logit choice model for accommodating spatial correlation across observational units," Journal of Geographical Systems, Springer, vol. 11(3), pages 243-272, September.
    14. Daniel McFadden & Kenneth Train, 2000. "Mixed MNL models for discrete response," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 15(5), pages 447-470.
    15. Brownston, David & Bunch, David S. & Train, Kenneth, 1999. "Joint mixed logit models of stated and revealed preferences for alternative-fuel vehicles," University of California Transportation Center, Working Papers qt7rf7s3nx, University of California Transportation Center.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wiktor Budziński, 2015. "The effects of non-constant marginal utility of cost for public goods valuation," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 43.
    2. Prateek Bansal & Vahid Keshavarzzadeh & Angelo Guevara & Shanjun Li & Ricardo A Daziano, 2022. "Designed quadrature to approximate integrals in maximum simulated likelihood estimation [Evaluating simulation-based approaches and multivariate quadrature on sparse grids in estimating multivariat," The Econometrics Journal, Royal Economic Society, vol. 25(2), pages 301-321.
    3. Czajkowski, Mikołaj & Budziński, Wiktor, 2019. "Simulation error in maximum likelihood estimation of discrete choice models," Journal of choice modelling, Elsevier, vol. 31(C), pages 73-85.
    4. Akar, Gulsah & Clifton, Kelly J. & Doherty, Sean T., 2012. "Redefining activity types: Who participates in which leisure activity?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 46(8), pages 1194-1204.
    5. Mikołaj Czajkowski & Wiktor Budziński & Danny Campbell & Marek Giergiczny & Nick Hanley, 2017. "Spatial Heterogeneity of Willingness to Pay for Forest Management," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 68(3), pages 705-727, November.
    6. Sobhani, Anae & Eluru, Naveen & Faghih-Imani, Ahmadreza, 2013. "A latent segmentation based multiple discrete continuous extreme value model," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 154-169.
    7. Tien Mai & Fabian Bastin & Emma Frejinger, 2018. "A decomposition method for estimating recursive logit based route choice models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 253-275, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paleti, Rajesh, 2018. "Generalized multinomial probit Model: Accommodating constrained random parameters," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 248-262.
    2. Bliemer, Michiel C.J. & Rose, John M., 2010. "Construction of experimental designs for mixed logit models allowing for correlation across choice observations," Transportation Research Part B: Methodological, Elsevier, vol. 44(6), pages 720-734, July.
    3. Czajkowski, Mikołaj & Budziński, Wiktor, 2019. "Simulation error in maximum likelihood estimation of discrete choice models," Journal of choice modelling, Elsevier, vol. 31(C), pages 73-85.
    4. Staus, Alexander, 2008. "Standard and Shuffled Halton Sequences in a Mixed Logit Model," Working Papers 93856, Universitaet Hohenheim, Institute of Agricultural Policy and Agricultural Markets.
    5. Junyi Shen & Yusuke Sakata & Yoshizo Hashimoto, 2006. "A Comparison between Latent Class Model and Mixed Logit Model for Transport Mode Choice: Evidences from Two Datasets of Japan," Discussion Papers in Economics and Business 06-05, Osaka University, Graduate School of Economics.
    6. Yu, Jie & Goos, Peter & Vandebroek, Martina, 2010. "Comparing different sampling schemes for approximating the integrals involved in the efficient design of stated choice experiments," Transportation Research Part B: Methodological, Elsevier, vol. 44(10), pages 1268-1289, December.
    7. Haghani, Milad & Bliemer, Michiel C.J. & Hensher, David A., 2021. "The landscape of econometric discrete choice modelling research," Journal of choice modelling, Elsevier, vol. 40(C).
    8. Stephane Hess & John Rose, 2012. "Can scale and coefficient heterogeneity be separated in random coefficients models?," Transportation, Springer, vol. 39(6), pages 1225-1239, November.
    9. Ben-Elia, Eran & Shiftan, Yoram, 2010. "Which road do I take? A learning-based model of route-choice behavior with real-time information," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 249-264, May.
    10. Liu, Henry X. & He, Xiaozheng & Recker, Will, 2007. "Estimation of the time-dependency of values of travel time and its reliability from loop detector data," Transportation Research Part B: Methodological, Elsevier, vol. 41(4), pages 448-461, May.
    11. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    12. Stephane Hess & John W. Polak, 2004. "An analysis of parking behaviour using discrete choice models calibrated on SP datasets," ERSA conference papers ersa04p60, European Regional Science Association.
    13. Zhu, Dianchen & Sze, N.N. & Feng, Zhongxiang & Chan, Ho-Yin, 2023. "Waiting for signalized crossing or walking to footbridge/underpass? Examining the effect of weather using stated choice experiment with panel mixed random regret minimization approach," Transport Policy, Elsevier, vol. 138(C), pages 144-169.
    14. Yang, Chih-Wen & Sung, Yen-Ching, 2010. "Constructing a mixed-logit model with market positioning to analyze the effects of new mode introduction," Journal of Transport Geography, Elsevier, vol. 18(1), pages 175-182.
    15. De Ayala Bilbao, Amaya & Hoyos Ramos, David & Mariel Chladkova, Petr, 2012. "Landscape valuation through discrete choice experiments: Current practice and future research reflections," BILTOKI 1134-8984, Universidad del País Vasco - Departamento de Economía Aplicada III (Econometría y Estadística).
    16. Junyi Shen, 2009. "Latent class model or mixed logit model? A comparison by transport mode choice data," Applied Economics, Taylor & Francis Journals, vol. 41(22), pages 2915-2924.
    17. Marco A. Palma & Dmitry V. Vedenov & David Bessler, 2020. "The order of variables, simulation noise, and accuracy of mixed logit estimates," Empirical Economics, Springer, vol. 58(5), pages 2049-2083, May.
    18. Train, Kenneth & Wilson, Wesley W., 2008. "Estimation on stated-preference experiments constructed from revealed-preference choices," Transportation Research Part B: Methodological, Elsevier, vol. 42(3), pages 191-203, March.
    19. Bhat, Chandra R. & Sen, Sudeshna, 2006. "Household vehicle type holdings and usage: an application of the multiple discrete-continuous extreme value (MDCEV) model," Transportation Research Part B: Methodological, Elsevier, vol. 40(1), pages 35-53, January.
    20. Bhat, Chandra R., 2011. "The maximum approximate composite marginal likelihood (MACML) estimation of multinomial probit-based unordered response choice models," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 923-939, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:46:y:2012:i:2:p:305-320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.