IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v25y2016i2d10.1007_s10726-015-9445-7.html
   My bibliography  Save this article

Group Decision Making with Dispersion in the Analytic Hierarchy Process

Author

Listed:
  • Natalie M. Scala

    (Towson University)

  • Jayant Rajgopal

    (University of Pittsburgh)

  • Luis G. Vargas

    (University of Pittsburgh)

  • Kim LaScola Needy

    (University of Arkansas)

Abstract

With group judgments in the context of the Analytic Hierarchy Process (AHP) one would hope for broad consensus among the decision makers. However, in practice this will not always be the case, and significant dispersion may exist among the judgments. Too much dispersion violates the principle of Pareto Optimality at the comparison level and/or matrix level, and if this happens, then the group may be homogenous in some comparisons and heterogeneous in others. The question then arises as to what would be an appropriate aggregation scheme when a consensus cannot be reached and the decision makers are either unwilling or unable to revise their judgments. In particular, the traditional aggregation via the geometric mean has been shown to be inappropriate in such situations. In this paper, we propose a new method for aggregating judgments when the raw geometric mean cannot be used. Our work is motivated by a supply chain problem of managing spare parts in the nuclear power generation sector and can be applied whenever the AHP is used with judgments from multiple decision makers. The method makes use of principal components analysis (PCA) to combine the judgments into one aggregated value for each pairwise comparison. We show that this approach is equivalent to using a weighted geometric mean with the weights obtained from the PCA.

Suggested Citation

  • Natalie M. Scala & Jayant Rajgopal & Luis G. Vargas & Kim LaScola Needy, 2016. "Group Decision Making with Dispersion in the Analytic Hierarchy Process," Group Decision and Negotiation, Springer, vol. 25(2), pages 355-372, March.
  • Handle: RePEc:spr:grdene:v:25:y:2016:i:2:d:10.1007_s10726-015-9445-7
    DOI: 10.1007/s10726-015-9445-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-015-9445-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-015-9445-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Molenaers, An & Baets, Herman & Pintelon, Liliane & Waeyenbergh, Geert, 2012. "Criticality classification of spare parts: A case study," International Journal of Production Economics, Elsevier, vol. 140(2), pages 570-578.
    2. Robert L. Armacost & Jamshid C. Hosseini & Julie Pet-Edwards, 1999. "Using the Analytic Hierarchy Process as a Two-phase Integrated Decision Approach for Large Nominal Groups," Group Decision and Negotiation, Springer, vol. 8(6), pages 535-555, November.
    3. Liu, Fuh-Hwa Franklin & Hai, Hui Lin, 2005. "The voting analytic hierarchy process method for selecting supplier," International Journal of Production Economics, Elsevier, vol. 97(3), pages 308-317, September.
    4. Wei, Chun-Chin & Chien, Chen-Fu & Wang, Mao-Jiun J., 2005. "An AHP-based approach to ERP system selection," International Journal of Production Economics, Elsevier, vol. 96(1), pages 47-62, April.
    5. Saaty, Thomas L., 1990. "How to make a decision: The analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 48(1), pages 9-26, September.
    6. Van den Honert, R. C., 1998. "Stochastic group preference modelling in the multiplicative AHP: A model of group consensus," European Journal of Operational Research, Elsevier, vol. 110(1), pages 99-111, October.
    7. Korpela, Jukka & Lehmusvaara, Antti & Nisonen, Jukka, 2007. "Warehouse operator selection by combining AHP and DEA methodologies," International Journal of Production Economics, Elsevier, vol. 108(1-2), pages 135-142, July.
    8. Lolli, F. & Ishizaka, A. & Gamberini, R., 2014. "New AHP-based approaches for multi-criteria inventory classification," International Journal of Production Economics, Elsevier, vol. 156(C), pages 62-74.
    9. Ramanathan, R. & Ganesh, L. S., 1994. "Group preference aggregation methods employed in AHP: An evaluation and an intrinsic process for deriving members' weightages," European Journal of Operational Research, Elsevier, vol. 79(2), pages 249-265, December.
    10. Thomas Saaty & Luis Vargas, 2012. "The possibility of group choice: pairwise comparisons and merging functions," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 38(3), pages 481-496, March.
    11. R.C. Van den Honert, 2001. "Decisional Power in Group Decision Making: A Note on the Allocation of Group Members' Weights in the Multiplicative AHP and SMART," Group Decision and Negotiation, Springer, vol. 10(3), pages 275-286, May.
    12. Thomas L. Saaty, 2013. "The Modern Science of Multicriteria Decision Making and Its Practical Applications: The AHP/ANP Approach," Operations Research, INFORMS, vol. 61(5), pages 1101-1118, October.
    13. Lai, Vincent S. & Wong, Bo K. & Cheung, Waiman, 2002. "Group decision making in a multiple criteria environment: A case using the AHP in software selection," European Journal of Operational Research, Elsevier, vol. 137(1), pages 134-144, February.
    14. Forman, Ernest & Peniwati, Kirti, 1998. "Aggregating individual judgments and priorities with the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 108(1), pages 165-169, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amenta, Pietro & Lucadamo, Antonio & Marcarelli, Gabriella, 2021. "On the choice of weights for aggregating judgments in non-negotiable AHP group decision making," European Journal of Operational Research, Elsevier, vol. 288(1), pages 294-301.
    2. Szabolcs Duleba & Sarbast Moslem, 2018. "Sustainable Urban Transport Development with Stakeholder Participation, an AHP-Kendall Model: A Case Study for Mersin," Sustainability, MDPI, vol. 10(10), pages 1-14, October.
    3. Tian Yang & Changhao Liu & Raymond P. Côté & Jinwen Ye & Weifeng Liu, 2022. "Evaluating the Barriers to Industrial Symbiosis Using a Group AHP-TOPSIS Model," Sustainability, MDPI, vol. 14(11), pages 1-30, June.
    4. Fengling Dai & Kunyan Wei & Yanhua Chen & Mei Ju, 2019. "Construction of an index system for qualitative evaluation of undergraduate nursing students innovative ability: A Delphi study," Journal of Clinical Nursing, John Wiley & Sons, vol. 28(23-24), pages 4379-4388, December.
    5. Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez, 2023. "Reducing incompatibility in a local AHP-group decision making context," Annals of Operations Research, Springer, vol. 326(1), pages 1-26, July.
    6. Jahangir Wasim & Vijay Vyas & Pietro Amenta & Antonio Lucadamo & Gabriella Marcarelli & Alessio Ishizaka, 2023. "Deriving the weights for aggregating judgments in a multi-group problem: an application to curriculum development in entrepreneurship," Annals of Operations Research, Springer, vol. 326(2), pages 853-877, July.
    7. Paweł Karczmarek & Witold Pedrycz & Adam Kiersztyn, 2021. "Fuzzy Analytic Hierarchy Process in a Graphical Approach," Group Decision and Negotiation, Springer, vol. 30(2), pages 463-481, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sasaki, Yasuo, 2023. "Strategic manipulation in group decisions with pairwise comparisons: A game theoretical perspective," European Journal of Operational Research, Elsevier, vol. 304(3), pages 1133-1139.
    2. Dong, Qingxing & Cooper, Orrin, 2016. "A peer-to-peer dynamic adaptive consensus reaching model for the group AHP decision making," European Journal of Operational Research, Elsevier, vol. 250(2), pages 521-530.
    3. José María Moreno-Jiménez & Manuel Salvador & Pilar Gargallo & Alfredo Altuzarra, 2016. "Systemic decision making in AHP: a Bayesian approach," Annals of Operations Research, Springer, vol. 245(1), pages 261-284, October.
    4. B S Ahn & S H Choi, 2008. "ERP system selection using a simulation-based AHP approach: a case of Korean homeshopping company," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(3), pages 322-330, March.
    5. Hsu-Shih Shih, 2016. "A Mixed-Data Evaluation in Group TOPSIS with Differentiated Decision Power," Group Decision and Negotiation, Springer, vol. 25(3), pages 537-565, May.
    6. JosÉ MarÍa & Moreno JimÉnez & Juan AguarÓn Joven & AgustÍn Raluy Pirla & Alberto TurÓn Lanuza, 2005. "A Spreadsheet Module for Consistent Consensus Building in AHP-Group Decision Making," Group Decision and Negotiation, Springer, vol. 14(2), pages 89-108, March.
    7. Lee, Hakyeon & Geum, Youngjung, 2017. "Development of the scenario-based technology roadmap considering layer heterogeneity: An approach using CIA and AHP," Technological Forecasting and Social Change, Elsevier, vol. 117(C), pages 12-24.
    8. Höfer, Tim & Sunak, Yasin & Siddique, Hafiz & Madlener, Reinhard, 2016. "Wind farm siting using a spatial Analytic Hierarchy Process approach: A case study of the Städteregion Aachen," Applied Energy, Elsevier, vol. 163(C), pages 222-243.
    9. Malcolm J. Beynon, 2006. "The Role of the DS/AHP in Identifying Inter-Group Alliances and Majority Rule Within Group Decision Making," Group Decision and Negotiation, Springer, vol. 15(1), pages 21-42, January.
    10. Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez, 2016. "The precise consistency consensus matrix in a local AHP-group decision making context," Annals of Operations Research, Springer, vol. 245(1), pages 245-259, October.
    11. Contreras, Francisco & Hanaki, Keisuke & Aramaki, Toshiya & Connors, Stephen, 2008. "Application of analytical hierarchy process to analyze stakeholders preferences for municipal solid waste management plans, Boston, USA," Resources, Conservation & Recycling, Elsevier, vol. 52(7), pages 979-991.
    12. Bernasconi, Michele & Choirat, Christine & Seri, Raffaello, 2014. "Empirical properties of group preference aggregation methods employed in AHP: Theory and evidence," European Journal of Operational Research, Elsevier, vol. 232(3), pages 584-592.
    13. Claudio Marcianò & Giuseppa Romeo & Fortunato Cozzupoli, 2015. "An Integrated Methodological Framework for the Definition of Local Development. Strategies for Fisheries Local Action Groups: an application to the Stretto Coast FLAG in South Italy," 2015 EAFE (European Association of Fisheries Economists) Conference Papers 008, Nisea.
    14. Kreng, Victor B. & Wu, Chao-Yi, 2007. "Evaluation of knowledge portal development tools using a fuzzy AHP approach: The case of Taiwanese stone industry," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1795-1810, February.
    15. Lucille Alonso & Florent Renard, 2020. "A Comparative Study of the Physiological and Socio-Economic Vulnerabilities to Heat Waves of the Population of the Metropolis of Lyon (France) in a Climate Change Context," IJERPH, MDPI, vol. 17(3), pages 1-21, February.
    16. María Teresa Escobar & José María Moreno-jiménez, 2007. "Aggregation of Individual Preference Structures in Ahp-Group Decision Making," Group Decision and Negotiation, Springer, vol. 16(4), pages 287-301, July.
    17. Ualison Rébula De Oliveira & Hilda Anatiely Donato Souza & Carlos Augusto Gabriel Menezes & Henrique Martins Rocha, 2023. "Straightening machine preventive maintenance intervention plan based on AHP: a case study in a steel company in Brazil," Operations Management Research, Springer, vol. 16(3), pages 1577-1593, September.
    18. Kik, M.C. & Claassen, G.D.H. & Meuwissen, M.P.M. & Smit, A.B. & Saatkamp, H.W., 2021. "Actor analysis for sustainable soil management – A case study from the Netherlands," Land Use Policy, Elsevier, vol. 107(C).
    19. Büyüközkan, Gülçin & Ruan, Da, 2008. "Evaluation of software development projects using a fuzzy multi-criteria decision approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 77(5), pages 464-475.
    20. Wenshuai Wu & Gang Kou, 2016. "A group consensus model for evaluating real estate investment alternatives," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 2(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:25:y:2016:i:2:d:10.1007_s10726-015-9445-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.