IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i15p5299-d388460.html
   My bibliography  Save this article

Enhanced Biodegradation of Phthalic Acid Esters’ Derivatives by Plasticizer-Degrading Bacteria ( Burkholderia cepacia , Archaeoglobus fulgidus , Pseudomonas aeruginosa ) Using a Correction 3D-QSAR Model

Author

Listed:
  • Haigang Zhang

    (Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, China)

  • Chengji Zhao

    (Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, China)

  • Hui Na

    (Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, China)

Abstract

A phthalic acid ester’s (PAEs) comprehensive biodegradability three-dimensional structure-activity relationship (3D-QSAR) model was established, to design environmentally friendly PAE derivatives, which could be simultaneously degraded by plasticizer-degrading bacteria, such as Burkholderia cepacia , Archaeoglobus fulgidus , and Pseudomonas aeruginosa . Only three derivatives of diethyl phthalate (DEP (DEP-27, DEP-28 and DEP-29)) were suited for their functionality and environmental friendliness, which had an improved stability in the environment and improved the characteristics (bio-toxicity, bioaccumulation, persistence, and long-range migration) of the persistent organic pollutants (POPs). The simulation inference of the microbial degradation path before and after DEP modification and the calculation of the reaction energy barrier exhibited the energy barrier for degradation being reduced after DEP modification and was consistent with the increased ratio of comprehensive biodegradability. This confirmed the effectiveness of the comparative molecular similarity index analysis (CoMSIA) model of the PAE’s comprehensive biodegradability. In addition, a molecular dynamics simulation revealed that the binding of the DEP-29 derivative with the three plasticizer-degradation enzymes increased significantly. DEP-29 could be used as a methyl phthalate derivative that synergistically degrades with microplastics, providing directional selection and theoretical designing for plasticizer replacement.

Suggested Citation

  • Haigang Zhang & Chengji Zhao & Hui Na, 2020. "Enhanced Biodegradation of Phthalic Acid Esters’ Derivatives by Plasticizer-Degrading Bacteria ( Burkholderia cepacia , Archaeoglobus fulgidus , Pseudomonas aeruginosa ) Using a Correction 3D-QSAR Mod," IJERPH, MDPI, vol. 17(15), pages 1-17, July.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:15:p:5299-:d:388460
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/15/5299/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/15/5299/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhixing Ren & Yingwei Wang & Haihong Xu & Yufei Li & Song Han, 2019. "Fuzzy Comprehensive Evaluation Assistant 3D-QSAR of Environmentally Friendly FQs to Reduce ADRs," IJERPH, MDPI, vol. 16(17), pages 1-20, August.
    2. Andrzej M. Brzozowski & Ashley C. W. Pike & Zbigniew Dauter & Roderick E. Hubbard & Tomas Bonn & Owe Engström & Lars Öhman & Geoffrey L. Greene & Jan-Åke Gustafsson & Mats Carlquist, 1997. "Molecular basis of agonism and antagonism in the oestrogen receptor," Nature, Nature, vol. 389(6652), pages 753-758, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei He & Wenhui Zhang & Zhenhua Chu & Yu Li, 2021. "Mitigating the Adverse Effects of Polychlorinated Biphenyl Derivatives on Estrogenic Activity via Molecular Modification Techniques," IJERPH, MDPI, vol. 18(9), pages 1-19, May.
    2. Henrieta Hlisníková & Ida Petrovičová & Branislav Kolena & Miroslava Šidlovská & Alexander Sirotkin, 2020. "Effects and Mechanisms of Phthalates’ Action on Reproductive Processes and Reproductive Health: A Literature Review," IJERPH, MDPI, vol. 17(18), pages 1-37, September.
    3. Fenglei Li & Qiaoyu Hu & Xianglei Zhang & Renhong Sun & Zhuanghua Liu & Sanan Wu & Siyuan Tian & Xinyue Ma & Zhizhuo Dai & Xiaobao Yang & Shenghua Gao & Fang Bai, 2022. "DeepPROTACs is a deep learning-based targeted degradation predictor for PROTACs," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Yilin Hou & Yuanyuan Zhao & Yu Li, 2020. "Environmentally Friendly Fluoroquinolone Derivatives with Lower Plasma Protein Binding Rate Designed Using 3D-QSAR, Molecular Docking and Molecular Dynamics Simulation," IJERPH, MDPI, vol. 17(18), pages 1-18, September.
    5. Peixuan Sun & Wenjin Zhao, 2021. "Strategies to Control Human Health Risks Arising from Antibiotics in the Environment: Molecular Modification of QNs for Enhanced Plant–Microbial Synergistic Degradation," IJERPH, MDPI, vol. 18(20), pages 1-26, October.
    6. Michele Samorani & Manuel Laguna & Robert Kirk DeLisle & Daniel C. Weaver, 2011. "A Randomized Exhaustive Propositionalization Approach for Molecule Classification," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 331-345, August.
    7. Yuting Chen & Yuying Dong & Le Li & Jian Jiao & Sitong Liu & Xuejun Zou, 2022. "Toxicity Rank Order (TRO) As a New Approach for Toxicity Prediction by QSAR Models," IJERPH, MDPI, vol. 20(1), pages 1-10, December.
    8. Peixuan Sun & Yuanyuan Zhao & Luze Yang & Zhixing Ren & Wenjin Zhao, 2020. "Environmentally Friendly Quinolones Design for a Two-Way Choice between Biotoxicity and Genotoxicity through Double-Activity 3D-QSAR Model Coupled with the Variation Weighting Method," IJERPH, MDPI, vol. 17(24), pages 1-22, December.
    9. Lu-ze Yang & Miao Liu, 2020. "A Double-Activity (Green Algae Toxicity and Bacterial Genotoxicity) 3D-QSAR Model Based on the Comprehensive Index Method and Its Application in Fluoroquinolones’ Modification," IJERPH, MDPI, vol. 17(3), pages 1-14, February.
    10. Xingyan Jin & Yuanyuan Zhao & Zhixing Ren & Panpan Wang & Yu Li, 2022. "Bio-Enhanced Degradation Strategies for Fluoroquinolones in the Sewage Sludge Composting Stage: Molecular Modification and Resistance Gene Regulation," IJERPH, MDPI, vol. 19(13), pages 1-19, June.
    11. Xueyan Chen & Ugur Uzuner & Man Li & Weibing Shi & Joshua S. Yuan & Susie Y. Dai, 2016. "Phytoestrogens and Mycoestrogens Induce Signature Structure Dynamics Changes on Estrogen Receptor α," IJERPH, MDPI, vol. 13(9), pages 1-14, August.
    12. Benjamin M. Steiner & Abigail M. Benvie & Derek Lee & Yuwei Jiang & Daniel C. Berry, 2024. "Cxcr4 regulates a pool of adipocyte progenitors and contributes to adiposity in a sex-dependent manner," Nature Communications, Nature, vol. 15(1), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:15:p:5299-:d:388460. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.