IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v13y2016i9p869-d77133.html
   My bibliography  Save this article

Phytoestrogens and Mycoestrogens Induce Signature Structure Dynamics Changes on Estrogen Receptor α

Author

Listed:
  • Xueyan Chen

    (Department of Veterinary Pathology, Texas A&M University, College Station, TX 77843, USA)

  • Ugur Uzuner

    (Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
    Department of Molecular Biology and Genetics, Karadeniz Technical University, Trabzon 61080, Turkey)

  • Man Li

    (Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
    Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA)

  • Weibing Shi

    (Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
    Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA)

  • Joshua S. Yuan

    (Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
    Department of Molecular Biology and Genetics, Karadeniz Technical University, Trabzon 61080, Turkey
    Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843, USA)

  • Susie Y. Dai

    (Department of Veterinary Pathology, Texas A&M University, College Station, TX 77843, USA
    Office of the Taxes State Chemist, Texas A&M University, College Station, TX 77843, USA)

Abstract

Endocrine disrupters include a broad spectrum of chemicals such as industrial chemicals, natural estrogens and androgens, synthetic estrogens and androgens. Phytoestrogens are widely present in diet and food supplements; mycoestrogens are frequently found in grains. As human beings and animals are commonly exposed to phytoestrogens and mycoestrogens in diet and environment, it is important to understand the potential beneficial or hazardous effects of estrogenic compounds. Many bioassays have been established to study the binding of estrogenic compounds with estrogen receptor (ER) and provided rich data in the literature. However, limited assays can offer structure information with regard to the ligand/ER complex. Our current study surveys the global structure dynamics changes for ERα ligand binding domain (LBD) when phytoestrogens and mycoestrogens bind. The assay is based on the structure dynamics information probed by hydrogen deuterium exchange mass spectrometry and offers a unique viewpoint to elucidate the mechanism how phytoestrogens and mycoestrogens interact with estrogen receptor. The cluster analysis based on the hydrogen deuterium exchange (HDX) assay data reveals a unique pattern when phytoestrogens and mycoestrogens bind with ERα LBD compared to that of estradiol and synthetic estrogen modulators. Our study highlights that structure dynamics could play an important role in the structure function relationship when endocrine disrupters interact with estrogen receptors.

Suggested Citation

  • Xueyan Chen & Ugur Uzuner & Man Li & Weibing Shi & Joshua S. Yuan & Susie Y. Dai, 2016. "Phytoestrogens and Mycoestrogens Induce Signature Structure Dynamics Changes on Estrogen Receptor α," IJERPH, MDPI, vol. 13(9), pages 1-14, August.
  • Handle: RePEc:gam:jijerp:v:13:y:2016:i:9:p:869-:d:77133
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/13/9/869/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/13/9/869/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrzej M. Brzozowski & Ashley C. W. Pike & Zbigniew Dauter & Roderick E. Hubbard & Tomas Bonn & Owe Engström & Lars Öhman & Geoffrey L. Greene & Jan-Åke Gustafsson & Mats Carlquist, 1997. "Molecular basis of agonism and antagonism in the oestrogen receptor," Nature, Nature, vol. 389(6652), pages 753-758, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei He & Wenhui Zhang & Zhenhua Chu & Yu Li, 2021. "Mitigating the Adverse Effects of Polychlorinated Biphenyl Derivatives on Estrogenic Activity via Molecular Modification Techniques," IJERPH, MDPI, vol. 18(9), pages 1-19, May.
    2. Henrieta Hlisníková & Ida Petrovičová & Branislav Kolena & Miroslava Šidlovská & Alexander Sirotkin, 2020. "Effects and Mechanisms of Phthalates’ Action on Reproductive Processes and Reproductive Health: A Literature Review," IJERPH, MDPI, vol. 17(18), pages 1-37, September.
    3. Fenglei Li & Qiaoyu Hu & Xianglei Zhang & Renhong Sun & Zhuanghua Liu & Sanan Wu & Siyuan Tian & Xinyue Ma & Zhizhuo Dai & Xiaobao Yang & Shenghua Gao & Fang Bai, 2022. "DeepPROTACs is a deep learning-based targeted degradation predictor for PROTACs," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    4. Haigang Zhang & Chengji Zhao & Hui Na, 2020. "Enhanced Biodegradation of Phthalic Acid Esters’ Derivatives by Plasticizer-Degrading Bacteria ( Burkholderia cepacia , Archaeoglobus fulgidus , Pseudomonas aeruginosa ) Using a Correction 3D-QSAR Mod," IJERPH, MDPI, vol. 17(15), pages 1-17, July.
    5. Siqi Liu & David Jassby & Daniel Mandler & Andrea I. Schäfer, 2024. "Differentiation of adsorption and degradation in steroid hormone micropollutants removal using electrochemical carbon nanotube membrane," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    6. Peixuan Sun & Wenjin Zhao, 2021. "Strategies to Control Human Health Risks Arising from Antibiotics in the Environment: Molecular Modification of QNs for Enhanced Plant–Microbial Synergistic Degradation," IJERPH, MDPI, vol. 18(20), pages 1-26, October.
    7. Michele Samorani & Manuel Laguna & Robert Kirk DeLisle & Daniel C. Weaver, 2011. "A Randomized Exhaustive Propositionalization Approach for Molecule Classification," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 331-345, August.
    8. Benjamin M. Steiner & Abigail M. Benvie & Derek Lee & Yuwei Jiang & Daniel C. Berry, 2024. "Cxcr4 regulates a pool of adipocyte progenitors and contributes to adiposity in a sex-dependent manner," Nature Communications, Nature, vol. 15(1), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:13:y:2016:i:9:p:869-:d:77133. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.