IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i9p1561-d228166.html
   My bibliography  Save this article

Analysis of Mortality Change Rate from Temperature in Summer by Age, Occupation, Household Type, and Chronic Diseases in 229 Korean Municipalities from 2007–2016

Author

Listed:
  • Jongchul Park

    (Korea Environment Institute, 370 Sicheong-daero, Sejong 30147, Korea)

  • Yeora Chae

    (Korea Environment Institute, 370 Sicheong-daero, Sejong 30147, Korea)

  • Seo Hyung Choi

    (Korea Environment Institute, 370 Sicheong-daero, Sejong 30147, Korea)

Abstract

This study analyzed mortality change rate (MCR: daily change rate of mortality at a given temperature per average summer mortality) for 229 municipalities in Korea considering age, occupation, household type, chronic diseases, and regional temperature distribution. We found that the MCR for heat wave differs depending on socioeconomic factors and the temperature distribution in the region. The MCRs for the elderly (≥65 years of age), outdoor workers, one-person households, and chronic disease patients start to increase at lower temperatures and react more sensitively to temperature than others. For the socioeconomic factors considered in this study, occupation was found to be the most significant factor for the MCR differences (outdoor workers 1.17 and others 1.10 above 35 °C, p < 0.01). The MCRs of elderly outdoor workers increased consistently with temperature, while the MCRs of younger outdoor workers decreased at 33 °C, the heat wave warning level in Korea. The MCRs in lower temperature regions start to increase at 28 °C, whereas the MCRs start to increase at 30 °C in higher temperature regions. The results of this study suggest that heat wave policies should be based on contextualized impacts considering age, occupation, household type, chronic disease, and regional temperature distribution.

Suggested Citation

  • Jongchul Park & Yeora Chae & Seo Hyung Choi, 2019. "Analysis of Mortality Change Rate from Temperature in Summer by Age, Occupation, Household Type, and Chronic Diseases in 229 Korean Municipalities from 2007–2016," IJERPH, MDPI, vol. 16(9), pages 1-15, May.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:9:p:1561-:d:228166
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/9/1561/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/9/1561/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Do-Woo Kim & Ravinesh Deo & Jea-Hak Chung & Jong-Seol Lee, 2016. "Projection of heat wave mortality related to climate change in Korea," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(1), pages 623-637, January.
    2. Jae Young Lee & Ejin Kim & Woo-Seop Lee & Yeora Chae & Ho Kim, 2018. "Projection of Future Mortality Due to Temperature and Population Changes under Representative Concentration Pathways and Shared Socioeconomic Pathways," IJERPH, MDPI, vol. 15(4), pages 1-9, April.
    3. Lamia Kamal-Chaoui & Alexis Robert, 2009. "Competitive Cities and Climate Change," OECD Regional Development Working Papers 2009/2, OECD Publishing.
    4. Giuseppe Liotta & Maria Chiara Inzerilli & Leonardo Palombi & Olga Madaro & Stefano Orlando & Paola Scarcella & Daniela Betti & Maria Cristina Marazzi, 2018. "Social Interventions to Prevent Heat-Related Mortality in the Older Adult in Rome, Italy: A Quasi-Experimental Study," IJERPH, MDPI, vol. 15(4), pages 1-13, April.
    5. Vladimir Kendrovski & Michela Baccini & Gerardo Sanchez Martinez & Tanja Wolf & Elizabet Paunovic & Bettina Menne, 2017. "Quantifying Projected Heat Mortality Impacts under 21st-Century Warming Conditions for Selected European Countries," IJERPH, MDPI, vol. 14(7), pages 1-16, July.
    6. Aleš Urban & Hana Hanzlíková & Jan Kyselý & Eva Plavcová, 2017. "Impacts of the 2015 Heat Waves on Mortality in the Czech Republic—A Comparison with Previous Heat Waves," IJERPH, MDPI, vol. 14(12), pages 1-19, December.
    7. Rachel Lowe & Joan Ballester & James Creswick & Jean-Marie Robine & François R. Herrmann & Xavier Rodó, 2015. "Evaluating the Performance of a Climate-Driven Mortality Model during Heat Waves and Cold Spells in Europe," IJERPH, MDPI, vol. 12(2), pages 1-16, January.
    8. Rochelle Green & Rupa Basu & Brian Malig & Rachel Broadwin & Janice Kim & Bart Ostro, 2010. "The effect of temperature on hospital admissions in nine California counties," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 55(2), pages 113-121, April.
    9. Noriko Takahashi & Rieko Nakao & Kayo Ueda & Masaji Ono & Masahide Kondo & Yasushi Honda & Masahiro Hashizume, 2015. "Community Trial on Heat Related-Illness Prevention Behaviors and Knowledge for the Elderly," IJERPH, MDPI, vol. 12(3), pages 1-27, March.
    10. Alessandro Messeri & Marco Morabito & Michela Bonafede & Marcella Bugani & Miriam Levi & Alberto Baldasseroni & Alessandra Binazzi & Bernardo Gozzini & Simone Orlandini & Lars Nybo & Alessandro Marina, 2019. "Heat Stress Perception among Native and Migrant Workers in Italian Industries—Case Studies from the Construction and Agricultural Sectors," IJERPH, MDPI, vol. 16(7), pages 1-13, March.
    11. Kerstin K. Zander & Wouter J. W. Botzen & Elspeth Oppermann & Tord Kjellstrom & Stephen T. Garnett, 2015. "Heat stress causes substantial labour productivity loss in Australia," Nature Climate Change, Nature, vol. 5(7), pages 647-651, July.
    12. Bo Li & Steve Sain & Linda Mearns & Henry Anderson & Sari Kovats & Kristie Ebi & Marni Bekkedal & Marty Kanarek & Jonathan Patz, 2012. "The impact of extreme heat on morbidity in Milwaukee, Wisconsin," Climatic Change, Springer, vol. 110(3), pages 959-976, February.
    13. Francesca K. De’ Donato & Michela Leone & Matteo Scortichini & Manuela De Sario & Klea Katsouyanni & Timo Lanki & Xavier Basagaña & Ferran Ballester & Christofer Åström & Anna Paldy & Mathilde Pascal , 2015. "Changes in the Effect of Heat on Mortality in the Last 20 Years in Nine European Cities. Results from the PHASE Project," IJERPH, MDPI, vol. 12(12), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jeemin Youn & Hyungkyoo Kim & Jaekyung Lee, 2023. "Relationships between Thermal Environment and Air Pollution of Seoul’s 25 Districts Using Vector Autoregressive Granger Causality," Sustainability, MDPI, vol. 15(23), pages 1-22, November.
    2. Sockho Jeong & Yeonyeop Lim & Yeji Kang & Chaeyeon Yi, 2024. "Elucidating Uncertainty in Heat Vulnerability Mapping: Perspectives on Impact Variables and Modeling Approaches," IJERPH, MDPI, vol. 21(7), pages 1-17, June.
    3. Saber Yezli & Abdulaziz Mushi & Yara Yassin & Fuad Maashi & Anas Khan, 2019. "Knowledge, Attitude and Practice of Pilgrims Regarding Heat-Related Illnesses during the 2017 Hajj Mass Gathering," IJERPH, MDPI, vol. 16(17), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fariha Hasan & Shayan Marsia & Kajal Patel & Priyanka Agrawal & Junaid Abdul Razzak, 2021. "Effective Community-Based Interventions for the Prevention and Management of Heat-Related Illnesses: A Scoping Review," IJERPH, MDPI, vol. 18(16), pages 1-14, August.
    2. Letian Li & Boyang Sun & Zhuqiang Hu & Jun Zhang & Song Gao & Haifeng Bian & Jiansong Wu, 2022. "Heat Strain Evaluation of Power Grid Outdoor Workers Based on a Human Bioheat Model," IJERPH, MDPI, vol. 19(13), pages 1-17, June.
    3. Joaquín Bernal-Ramírez & Jair Ojeda-Joya & Camila Agudelo-Rivera & Felipe Clavijo-Ramírez & Carolina Durana-Ángel & Clark Granger-Castaño & Daniel Osorio-Rodríguez & Daniel Parra-Amado & José Pulido &, 2022. "Impacto macroeconómico del cambio climático en Colombia," Revista ESPE - Ensayos sobre Política Económica, Banco de la Republica de Colombia, issue 102, pages 1-62, July.
    4. repec:hal:journl:hal-04684634 is not listed on IDEAS
    5. Joris Adriaan Frank Van Loenhout & Jose Manuel Rodriguez-Llanes & Debarati Guha-Sapir, 2016. "Stakeholders’ Perception on National Heatwave Plans and Their Local Implementation in Belgium and The Netherlands," IJERPH, MDPI, vol. 13(11), pages 1-14, November.
    6. Monika Nitschke & Antoinette Krackowizer & Alana L. Hansen & Peng Bi & Graeme R. Tucker, 2017. "Heat Health Messages: A Randomized Controlled Trial of a Preventative Messages Tool in the Older Population of South Australia," IJERPH, MDPI, vol. 14(9), pages 1-10, August.
    7. Mare Lõhmus, 2018. "Possible Biological Mechanisms Linking Mental Health and Heat—A Contemplative Review," IJERPH, MDPI, vol. 15(7), pages 1-21, July.
    8. Zhang, Shaohui & Guo, Qinxin & Smyth, Russell & Yao, Yao, 2022. "Extreme temperatures and residential electricity consumption: Evidence from Chinese households," Energy Economics, Elsevier, vol. 107(C).
    9. Fritz, Manuela, 2021. "Temperature and non-communicable diseases: Evidence from Indonesia's primary health care system," Passauer Diskussionspapiere, Volkswirtschaftliche Reihe V-84-21, University of Passau, Faculty of Business and Economics.
    10. Tjaša Pogačar & Zala Žnidaršič & Lučka Kajfež Bogataj & Zalika Črepinšek, 2020. "Steps Towards Comprehensive Heat Communication in the Frame of a Heat Health Warning System in Slovenia," IJERPH, MDPI, vol. 17(16), pages 1-16, August.
    11. Mariano J. Rabassa & Mariana Conte Grand & Christian M. García-Witulski, 2021. "Heat warnings and avoidance behavior: evidence from a bike-sharing system," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 23(1), pages 1-28, January.
    12. Matteo Scortichini & Manuela De Sario & Francesca K. De’Donato & Marina Davoli & Paola Michelozzi & Massimo Stafoggia, 2018. "Short-Term Effects of Heat on Mortality and Effect Modification by Air Pollution in 25 Italian Cities," IJERPH, MDPI, vol. 15(8), pages 1-12, August.
    13. John Nairn & Bertram Ostendorf & Peng Bi, 2018. "Performance of Excess Heat Factor Severity as a Global Heatwave Health Impact Index," IJERPH, MDPI, vol. 15(11), pages 1-26, November.
    14. QIN, Bo & WU, Jianfeng, 2015. "Does urban concentration mitigate CO2 emissions? Evidence from China 1998–2008," China Economic Review, Elsevier, vol. 35(C), pages 220-231.
    15. Wen Yi & Albert P. C. Chan, 2017. "Effects of Heat Stress on Construction Labor Productivity in Hong Kong: A Case Study of Rebar Workers," IJERPH, MDPI, vol. 14(9), pages 1-14, September.
    16. Rakel Kristjansdottir & Henner Busch, 2019. "Towards a Neutral North—The Urban Low Carbon Transitions of Akureyri, Iceland," Sustainability, MDPI, vol. 11(7), pages 1-16, April.
    17. Janine Wichmann & Zorana Andersen & Matthias Ketzel & Thomas Ellermann & Steffen Loft, 2011. "Apparent Temperature and Cause-Specific Emergency Hospital Admissions in Greater Copenhagen, Denmark," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-7, July.
    18. Min-Liang Chu & Chiao-Yu Shih & Tsung-Cheng Hsieh & Han-Lin Chen & Chih-Wei Lee & Jen-Che Hsieh, 2019. "Acute Myocardial Infarction Hospitalizations between Cold and Hot Seasons in an Island across Tropical and Subtropical Climate Zones—A Population-Based Study," IJERPH, MDPI, vol. 16(15), pages 1-14, August.
    19. Daghagh Yazd, Sahar & Wheeler, Sarah Ann & Zuo, Alec, 2020. "Understanding the impacts of water scarcity and socio-economic demographics on farmer mental health in the Murray-Darling Basin," Ecological Economics, Elsevier, vol. 169(C).
    20. Randazzo, Teresa & Pavanello, Filippo & De Cian, Enrica, 2023. "Adaptation to climate change: Air-conditioning and the role of remittances," Journal of Environmental Economics and Management, Elsevier, vol. 120(C).
    21. Marco Morabito & Alessandro Messeri & Pascal Noti & Ana Casanueva & Alfonso Crisci & Sven Kotlarski & Simone Orlandini & Cornelia Schwierz & Christoph Spirig & Boris R.M. Kingma & Andreas D. Flouris &, 2019. "An Occupational Heat–Health Warning System for Europe: The HEAT-SHIELD Platform," IJERPH, MDPI, vol. 16(16), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:9:p:1561-:d:228166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.