IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i5p808-d211164.html
   My bibliography  Save this article

Using Human Movement Data to Identify Potential Areas of Zika Transmission: Case Study of the Largest Zika Cluster in Singapore

Author

Listed:
  • Jayanthi Rajarethinam

    (Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05-08, Singapore 138667, Singapore)

  • Janet Ong

    (Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05-08, Singapore 138667, Singapore)

  • Shi-Hui Lim

    (Starhub Limited, 67 Ubi Avenue 1, #05-01 StarHub Green, Singapore 408942, Singapore)

  • Yu-Heng Tay

    (Starhub Limited, 67 Ubi Avenue 1, #05-01 StarHub Green, Singapore 408942, Singapore)

  • Wacha Bounliphone

    (Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05-08, Singapore 138667, Singapore)

  • Chee-Seng Chong

    (Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05-08, Singapore 138667, Singapore)

  • Grace Yap

    (Environmental Public Health Operations, National Environment Agency, 40 Scotts Road, #13-00 Environment Building, Singapore 228231, Singapore)

  • Lee-Ching Ng

    (Environmental Health Institute, National Environment Agency, 11 Biopolis Way, #06-05-08, Singapore 138667, Singapore
    School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore)

Abstract

Singapore experienced its first Zika virus (ZIKV) cluster in August 2016. To understand the implication of human movement on disease spread, a retrospective study was conducted using aggregated and anonymized mobile phone data to examine movement from the cluster to identify areas of possible transmission. An origin–destination model was developed based on the movement of three groups of individuals: (i) construction workers, (ii) residents and (iii) visitors out of the cluster locality to other parts of the island. The odds ratio of ZIKV cases in a hexagon visited by an individual from the cluster, independent of the group of individuals, is 3.20 (95% CI: 2.65–3.87, p -value < 0.05), reflecting a higher count of ZIKV cases when there is a movement into a hexagon from the cluster locality. A comparison of independent ROC curves tested the statistical significance of the difference between the areas under the curves of the three groups of individuals. Visitors (difference in AUC = 0.119) and residents (difference in AUC = 0.124) have a significantly larger difference in area under the curve compared to the construction workers ( p -value < 0.05). This study supports the proof of concept of using mobile phone data to approximate population movement, thus identifying areas at risk of disease transmission.

Suggested Citation

  • Jayanthi Rajarethinam & Janet Ong & Shi-Hui Lim & Yu-Heng Tay & Wacha Bounliphone & Chee-Seng Chong & Grace Yap & Lee-Ching Ng, 2019. "Using Human Movement Data to Identify Potential Areas of Zika Transmission: Case Study of the Largest Zika Cluster in Singapore," IJERPH, MDPI, vol. 16(5), pages 1-13, March.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:5:p:808-:d:211164
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/5/808/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/5/808/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bruce Y Lee & Jorge A Alfaro-Murillo & Alyssa S Parpia & Lindsey Asti & Patrick T Wedlock & Peter J Hotez & Alison P Galvani, 2017. "The potential economic burden of Zika in the continental United States," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 11(4), pages 1-20, April.
    2. Neil M. Ferguson & Derek A.T. Cummings & Simon Cauchemez & Christophe Fraser & Steven Riley & Aronrag Meeyai & Sopon Iamsirithaworn & Donald S. Burke, 2005. "Strategies for containing an emerging influenza pandemic in Southeast Asia," Nature, Nature, vol. 437(7056), pages 209-214, September.
    3. Stephen Eubank & Hasan Guclu & V. S. Anil Kumar & Madhav V. Marathe & Aravind Srinivasan & Zoltán Toroczkai & Nan Wang, 2004. "Modelling disease outbreaks in realistic urban social networks," Nature, Nature, vol. 429(6988), pages 180-184, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuqi Zhang & Hongyan Ren & Runhe Shi, 2022. "Influences of Differentiated Residence and Workplace Location on the Identification of Spatiotemporal Patterns of Dengue Epidemics: A Case Study in Guangzhou, China," IJERPH, MDPI, vol. 19(20), pages 1-19, October.
    2. Shuli Zhou & Suhong Zhou & Lin Liu & Meng Zhang & Min Kang & Jianpeng Xiao & Tie Song, 2019. "Examining the Effect of the Environment and Commuting Flow from/to Epidemic Areas on the Spread of Dengue Fever," IJERPH, MDPI, vol. 16(24), pages 1-13, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kathryn Glass & Peter W. Tait & Elizabeth G. Hanna & Keith Dear, 2015. "Estimating Risks of Heat Strain by Age and Sex: A Population-Level Simulation Model," IJERPH, MDPI, vol. 12(5), pages 1-15, May.
    2. Kayuet Liu & Peter S. Bearman, 2015. "Focal Points, Endogenous Processes, and Exogenous Shocks in the Autism Epidemic," Sociological Methods & Research, , vol. 44(2), pages 272-305, May.
    3. S. M. Mniszewski & S. Y. Del Valle & P. D. Stroud & J. M. Riese & S. J. Sydoriak, 2008. "Pandemic simulation of antivirals + school closures: buying time until strain-specific vaccine is available," Computational and Mathematical Organization Theory, Springer, vol. 14(3), pages 209-221, September.
    4. Jeremy Hadidjojo & Siew Ann Cheong, 2011. "Equal Graph Partitioning on Estimated Infection Network as an Effective Epidemic Mitigation Measure," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-10, July.
    5. Tamer Edirne & Dilek Avci & Burçak Dagkara & Muslum Aslan, 2011. "Knowledge and anticipated attitudes of the community about bird flu outbreak in Turkey, 2007–2008: a survey-based descriptive study," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 56(2), pages 163-168, April.
    6. Wei Zhong, 2017. "Simulating influenza pandemic dynamics with public risk communication and individual responsive behavior," Computational and Mathematical Organization Theory, Springer, vol. 23(4), pages 475-495, December.
    7. Floriana Gargiulo & Sônia Ternes & Sylvie Huet & Guillaume Deffuant, 2010. "An Iterative Approach for Generating Statistically Realistic Populations of Households," PLOS ONE, Public Library of Science, vol. 5(1), pages 1-9, January.
    8. Saturnino Luz & Masood Masoodian, 2022. "Exploring Environmental and Geographical Factors Influencing the Spread of Infectious Diseases with Interactive Maps," Sustainability, MDPI, vol. 14(16), pages 1-19, August.
    9. Mark S. Handcock & Adrian E. Raftery & Jeremy M. Tantrum, 2007. "Model‐based clustering for social networks," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 170(2), pages 301-354, March.
    10. Houštecká, Anna & Koh, Dongya & Santaeulàlia-Llopis, Raül, 2021. "Contagion at work: Occupations, industries and human contact," Journal of Public Economics, Elsevier, vol. 200(C).
    11. Pablo D. Fajgelbaum & Amit Khandelwal & Wookun Kim & Cristiano Mantovani & Edouard Schaal, 2021. "Optimal Lockdown in a Commuting Network," American Economic Review: Insights, American Economic Association, vol. 3(4), pages 503-522, December.
    12. John M Drake & Tobias S Brett & Shiyang Chen & Bogdan I Epureanu & Matthew J Ferrari & Éric Marty & Paige B Miller & Eamon B O’Dea & Suzanne M O’Regan & Andrew W Park & Pejman Rohani, 2019. "The statistics of epidemic transitions," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-14, May.
    13. Moshe B Hoshen & Anthony H Burton & Themis J V Bowcock, 2007. "Simulating disease transmission dynamics at a multi-scale level," International Journal of Microsimulation, International Microsimulation Association, vol. 1(1), pages 26-34.
    14. Naiya Patel & Moneba Anees & Reema Kola & Juan Acuña & Pura Rodriguez de la Vega & Grettel Castro & Juan G. Ruiz & Patria Rojas, 2019. "Association between Knowledge of Zika Transmission and Preventative Measures among Latinas of Childbearing Age in Farm-Working Communities in South Florida," IJERPH, MDPI, vol. 16(7), pages 1-11, April.
    15. Linus Nyiwul, 2021. "Epidemic Control and Resource Allocation: Approaches and Implications for the Management of COVID-19," Studies in Microeconomics, , vol. 9(2), pages 283-305, December.
    16. Bisin, Alberto & Moro, Andrea, 2022. "Spatial‐SIR with network structure and behavior: Lockdown rules and the Lucas critique," Journal of Economic Behavior & Organization, Elsevier, vol. 198(C), pages 370-388.
    17. Zhongqiang Bai & Juanle Wang & Mingming Wang & Mengxu Gao & Jiulin Sun, 2018. "Accuracy Assessment of Multi-Source Gridded Population Distribution Datasets in China," Sustainability, MDPI, vol. 10(5), pages 1-15, April.
    18. Wiriya Mahikul & Somkid Kripattanapong & Piya Hanvoravongchai & Aronrag Meeyai & Sopon Iamsirithaworn & Prasert Auewarakul & Wirichada Pan-ngum, 2020. "Contact Mixing Patterns and Population Movement among Migrant Workers in an Urban Setting in Thailand," IJERPH, MDPI, vol. 17(7), pages 1-11, March.
    19. James Truscott & Neil M Ferguson, 2012. "Evaluating the Adequacy of Gravity Models as a Description of Human Mobility for Epidemic Modelling," PLOS Computational Biology, Public Library of Science, vol. 8(10), pages 1-12, October.
    20. Andrew J Black & Joshua V Ross, 2013. "Estimating a Markovian Epidemic Model Using Household Serial Interval Data from the Early Phase of an Epidemic," PLOS ONE, Public Library of Science, vol. 8(8), pages 1-8, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:5:p:808-:d:211164. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.