IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v16y2019i24p5013-d296011.html
   My bibliography  Save this article

Examining the Effect of the Environment and Commuting Flow from/to Epidemic Areas on the Spread of Dengue Fever

Author

Listed:
  • Shuli Zhou

    (School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
    Guangdong Provincial Engineering Research Center for Public Security and Disaster, Guangzhou 510275, China)

  • Suhong Zhou

    (School of Geography and Planning, Sun Yat-sen University, Guangzhou 510275, China
    Guangdong Provincial Engineering Research Center for Public Security and Disaster, Guangzhou 510275, China)

  • Lin Liu

    (Center of Geo-Informatics for Public Security, School of Geographical Sciences, Guangzhou University, Guangzhou 510006, China
    Department of Geography, University of Cincinnati, Cincinnati, OH 45221-0131, USA)

  • Meng Zhang

    (Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China)

  • Min Kang

    (Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China)

  • Jianpeng Xiao

    (Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China)

  • Tie Song

    (Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430, China)

Abstract

Environment and human mobility have been considered as two important factors that drive the outbreak and transmission of dengue fever (DF). Most studies focus on the local environment while neglecting environment of the places, especially epidemic areas that people came from or traveled to. Commuting is a major form of interactions between places. Therefore, this research generates commuting flows from mobile phone tracked data. Geographically weighted Poisson regression (GWPR) and analysis of variance (ANOVA) are used to examine the effect of commuting flows, especially those from/to epidemic areas, on DF in 2014 at the Jiedao level in Guangzhou. The results suggest that (1) commuting flows from/to epidemic areas affect the transmission of DF; (2) such effects vary in space; and (3) the spatial variation of the effects can be explained by the environment of the epidemic areas that commuters commuted from/to. These findings have important policy implications for making effective intervention strategies, especially when resources are limited.

Suggested Citation

  • Shuli Zhou & Suhong Zhou & Lin Liu & Meng Zhang & Min Kang & Jianpeng Xiao & Tie Song, 2019. "Examining the Effect of the Environment and Commuting Flow from/to Epidemic Areas on the Spread of Dengue Fever," IJERPH, MDPI, vol. 16(24), pages 1-13, December.
  • Handle: RePEc:gam:jijerp:v:16:y:2019:i:24:p:5013-:d:296011
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/16/24/5013/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/16/24/5013/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng Cao & Tao Liu & Xing Li & Jin Wang & Hualiang Lin & Lingling Chen & Zhifeng Wu & Wenjun Ma, 2017. "Individual and Interactive Effects of Socio-Ecological Factors on Dengue Fever at Fine Spatial Scale: A Geographical Detector-Based Analysis," IJERPH, MDPI, vol. 14(7), pages 1-14, July.
    2. Siong Choy Chong & Wendy Ming Yen Teoh* & Ye Qi, 2015. "Comparing customer satisfaction with China mobile and China telecom services: An empirical study," Journal of Developing Areas, Tennessee State University, College of Business, vol. 49(6), pages 247-262, Special I.
    3. Yebin Chen & Zhigang Zhao & Zhichao Li & Weihong Li & Zhipeng Li & Renzhong Guo & Zhilu Yuan, 2019. "Spatiotemporal Transmission Patterns and Determinants of Dengue Fever: A Case Study of Guangzhou, China," IJERPH, MDPI, vol. 16(14), pages 1-14, July.
    4. Samir Bhatt & Peter W. Gething & Oliver J. Brady & Jane P. Messina & Andrew W. Farlow & Catherine L. Moyes & John M. Drake & John S. Brownstein & Anne G. Hoen & Osman Sankoh & Monica F. Myers & Dylan , 2013. "The global distribution and burden of dengue," Nature, Nature, vol. 496(7446), pages 504-507, April.
    5. Jayanthi Rajarethinam & Janet Ong & Shi-Hui Lim & Yu-Heng Tay & Wacha Bounliphone & Chee-Seng Chong & Grace Yap & Lee-Ching Ng, 2019. "Using Human Movement Data to Identify Potential Areas of Zika Transmission: Case Study of the Largest Zika Cluster in Singapore," IJERPH, MDPI, vol. 16(5), pages 1-13, March.
    6. Ben Adams & Durrell D Kapan, 2009. "Man Bites Mosquito: Understanding the Contribution of Human Movement to Vector-Borne Disease Dynamics," PLOS ONE, Public Library of Science, vol. 4(8), pages 1-10, August.
    7. Chi-Chieh Huang & Tuen Yee Tiffany Tam & Yinq-Rong Chern & Shih-Chun Candice Lung & Nai-Tzu Chen & Chih-Da Wu, 2018. "Spatial Clustering of Dengue Fever Incidence and Its Association with Surrounding Greenness," IJERPH, MDPI, vol. 15(9), pages 1-12, August.
    8. Xiaopeng Qi & Yong Wang & Yue Li & Yujie Meng & Qianqian Chen & Jiaqi Ma & George F Gao, 2015. "The Effects of Socioeconomic and Environmental Factors on the Incidence of Dengue Fever in the Pearl River Delta, China, 2013," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 9(10), pages 1-13, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuqi Zhang & Hongyan Ren & Runhe Shi, 2022. "Influences of Differentiated Residence and Workplace Location on the Identification of Spatiotemporal Patterns of Dengue Epidemics: A Case Study in Guangzhou, China," IJERPH, MDPI, vol. 19(20), pages 1-19, October.
    2. Syed Ali Asad Naqvi & Muhammad Sajjad & Liaqat Ali Waseem & Shoaib Khalid & Saima Shaikh & Syed Jamil Hasan Kazmi, 2021. "Integrating Spatial Modelling and Space–Time Pattern Mining Analytics for Vector Disease-Related Health Perspectives: A Case of Dengue Fever in Pakistan," IJERPH, MDPI, vol. 18(22), pages 1-30, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuqi Zhang & Hongyan Ren & Runhe Shi, 2022. "Influences of Differentiated Residence and Workplace Location on the Identification of Spatiotemporal Patterns of Dengue Epidemics: A Case Study in Guangzhou, China," IJERPH, MDPI, vol. 19(20), pages 1-19, October.
    2. Renaud Marti & Zhichao Li & Thibault Catry & Emmanuel Roux & Morgan Mangeas & Pascal Handschumacher & Jean Gaudart & Annelise Tran & Laurent Demagistri & Jean-François Faure & José Joaquín Carvajal & , 2020. "A Mapping Review on Urban Landscape Factors of Dengue Retrieved from Earth Observation Data, GIS Techniques, and Survey Questionnaires," Post-Print hal-02682042, HAL.
    3. Zhichao Li & Helen Gurgel & Nadine Dessay & Luojia Hu & Lei Xu & Peng Gong, 2020. "Semi-Supervised Text Classification Framework: An Overview of Dengue Landscape Factors and Satellite Earth Observation," IJERPH, MDPI, vol. 17(12), pages 1-29, June.
    4. Hongyan Ren & Lan Zheng & Qiaoxuan Li & Wu Yuan & Liang Lu, 2017. "Exploring Determinants of Spatial Variations in the Dengue Fever Epidemic Using Geographically Weighted Regression Model: A Case Study in the Joint Guangzhou-Foshan Area, China, 2014," IJERPH, MDPI, vol. 14(12), pages 1-13, December.
    5. Chi-Chieh Huang & Tuen Yee Tiffany Tam & Yinq-Rong Chern & Shih-Chun Candice Lung & Nai-Tzu Chen & Chih-Da Wu, 2018. "Spatial Clustering of Dengue Fever Incidence and Its Association with Surrounding Greenness," IJERPH, MDPI, vol. 15(9), pages 1-12, August.
    6. Haogao Gu & Ross Ka-Kit Leung & Qinlong Jing & Wangjian Zhang & Zhicong Yang & Jiahai Lu & Yuantao Hao & Dingmei Zhang, 2016. "Meteorological Factors for Dengue Fever Control and Prevention in South China," IJERPH, MDPI, vol. 13(9), pages 1-12, August.
    7. Tiago França Melo De Lima & Raquel Martins Lana & Tiago Garcia De Senna Carneiro & Cláudia Torres Codeço & Gabriel Souza Machado & Lucas Saraiva Ferreira & Líliam César De Castro Medeiros & Clodoveu A, 2016. "DengueME: A Tool for the Modeling and Simulation of Dengue Spatiotemporal Dynamics," IJERPH, MDPI, vol. 13(9), pages 1-21, September.
    8. Ting-Wu Chuang & Ka-Chon Ng & Thi Luong Nguyen & Luis Fernando Chaves, 2018. "Epidemiological Characteristics and Space-Time Analysis of the 2015 Dengue Outbreak in the Metropolitan Region of Tainan City, Taiwan," IJERPH, MDPI, vol. 15(3), pages 1-12, February.
    9. Jiucheng Xu & Keqiang Xu & Zhichao Li & Fengxia Meng & Taotian Tu & Lei Xu & Qiyong Liu, 2020. "Forecast of Dengue Cases in 20 Chinese Cities Based on the Deep Learning Method," IJERPH, MDPI, vol. 17(2), pages 1-14, January.
    10. Sakirul Khan & Sheikh Mohammad Fazle Akbar & Takaaki Yahiro & Mamun Al Mahtab & Kazunori Kimitsuki & Takehiro Hashimoto & Akira Nishizono, 2022. "Dengue Infections during COVID-19 Period: Reflection of Reality or Elusive Data Due to Effect of Pandemic," IJERPH, MDPI, vol. 19(17), pages 1-12, August.
    11. Shengzhang Dong & George Dimopoulos, 2023. "Aedes aegypti Argonaute 2 controls arbovirus infection and host mortality," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    12. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Cheong, Kang Hao, 2023. "A deep learning based hybrid architecture for weekly dengue incidences forecasting," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    13. Eunha Shim, 2017. "Cost-effectiveness of dengue vaccination in Yucatán, Mexico using a dynamic dengue transmission model," PLOS ONE, Public Library of Science, vol. 12(4), pages 1-17, April.
    14. Zhang, Ruixia, 2020. "Global dynamic analysis of a model for vector-borne diseases on bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    15. Dominik Kiemel & Ann-Sophie Helene Kroell & Solène Denolly & Uta Haselmann & Jean-François Bonfanti & Jose Ignacio Andres & Brahma Ghosh & Peggy Geluykens & Suzanne J. F. Kaptein & Lucas Wilken & Piet, 2024. "Pan-serotype dengue virus inhibitor JNJ-A07 targets NS4A-2K-NS4B interaction with NS2B/NS3 and blocks replication organelle formation," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    16. Hone-Jay Chu & Bo-Cheng Lin & Ming-Run Yu & Ta-Chien Chan, 2016. "Minimizing Spatial Variability of Healthcare Spatial Accessibility—The Case of a Dengue Fever Outbreak," IJERPH, MDPI, vol. 13(12), pages 1-11, December.
    17. Jue Wang & Mei-Po Kwan & Yanwei Chai, 2018. "An Innovative Context-Based Crystal-Growth Activity Space Method for Environmental Exposure Assessment: A Study Using GIS and GPS Trajectory Data Collected in Chicago," IJERPH, MDPI, vol. 15(4), pages 1-24, April.
    18. Cheng-Te Lin & Yu-Sheng Huang & Lu-Wen Liao & Chung-Te Ting, 2020. "Measuring Consumer Willingness to Pay to Reduce Health Risks of Contracting Dengue Fever," IJERPH, MDPI, vol. 17(5), pages 1-15, March.
    19. Amy R. Krystosik & Andrew Curtis & A. Desiree LaBeaud & Diana M. Dávalos & Robinson Pacheco & Paola Buritica & Álvaro A. Álvarez & Madhav P. Bhatta & Jorge Humberto Rojas Palacios & Mark A. James, 2018. "Neighborhood Violence Impacts Disease Control and Surveillance: Case Study of Cali, Colombia from 2014 to 2016," IJERPH, MDPI, vol. 15(10), pages 1-20, September.
    20. Laith Hussain-Alkhateeb & Tatiana Rivera Ramírez & Axel Kroeger & Ernesto Gozzer & Silvia Runge-Ranzinger, 2021. "Early warning systems (EWSs) for chikungunya, dengue, malaria, yellow fever, and Zika outbreaks: What is the evidence? A scoping review," PLOS Neglected Tropical Diseases, Public Library of Science, vol. 15(9), pages 1-25, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:16:y:2019:i:24:p:5013-:d:296011. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.